Manuale d’uso / di manutenzione del prodotto DMC-3425 del fabbricante Galil
Vai alla pagina of 210
USER MANUAL DMC-3425 Manual Rev. 1.1b By Galil Motion Control, Inc. Galil Motion Control, Inc. 3750 Atherton Road Rocklin, California 95765 Phone: (916) 626-0101 Fax: (916) 626-0102 Internet Address: support@galilmc.
.
DMC-3425 Contents • i Contents Contents i Chapter 1 Overview 1 Introduc tion ................................................................................................................... ............ 1 Overview of Motor Types..................
ii • Contents DMC-3425 Example 5 - Velocity Contr ol (Jogging) ................................................................... 33 Example 6 - Operation Under Torque Lim it ............................................................. 33 Example 7 - In terrogation .
DMC-3425 Contents • iii Controller Response to D ATA ................................................................................................ 63 Interrogating the C ontroller ..................................................................
iv • Contents DMC-3425 Example ..................................................................................................................... 99 Motion Sm oothing ...............................................................................
DMC-3425 Contents • v Displaying Variab les and Arrays............................................................................. 137 Interrogation Com mands .........................................................................................
vi • Contents DMC-3425 Appendices 171 Electrical Spec ifications ...................................................................................................... .. 171 Servo Co ntrol ...........................................................
DMC-3425 Chapter 1 Overview • 1 Chapter 1 Overview Introduction The DMC-3425 provides a highly versatile, powerful form of distributed control where multiple DMC- 3425 control lers can be l inked toget her on the Et hernet.
2 • Chapter 1 Overview DMC-3425 The DMC-3425 is d esigned for stand -alone applications and provides no n-volatile storage for programs, variables a nd array elements. This manual uses ‘DMC-3425’ to refer to the distri buted control E-series from Galil.
DMC-3425 Chapter 1 Overview • 3 The DMC-34 15 can cont rol BLMs eq uipped wi th Hall sensors as well as without Hall sen sors. If hall sensors are ava ilable, once the controller has been se tup, the controller will estimate the commutation phase upon reset.
4 • Chapter 1 Overview DMC-3425 DMC-3425 Functional Elements The DMC-34 25 circuitry can be divi ded into t he followin g functional groups as sh own in Figu re 1.
DMC-3425 Chapter 1 Overview • 5 General I/O The DMC-3415 provides interface circuitry for 7 TTL inputs and 3 TTL outputs. In addition, the controller provide s two 12-bit analog inputs. The g eneral inputs can also be used for triggering a high- speed positional latch fo r each axis.
6 • Chapter 1 Overview DMC-3425 For step motors, the am p lifiers should accept step and direction signals. Encoder An encoder translates motion into el ectrical pulses that a re fed back in to the controller. The DMC-3425 accepts feedback from either a rotary or linear enco der.
DMC-3425 Chapter 2 Getting Started • 7 Chapter 2 Getting Started The DMC-3425 Motion Controller DMC-1415 REV D GALIL MOTION CONTROL MADE IN USA MO SMX SMY * MRST UPGD 1200 9600 SD MC A1 A2 A8 A4 J5 .
8 • Chapter 2 Getting Started DMC-3425 Elements You Need Before you start, you must get all the n ecessary system elements. T hese include: 1. (1) DMC-3425 or DMC-3415, (1 ) 37-pin cable (ord er Cable -37). 2. Servo m otor(s) wit h encoders o r stepper motors.
DMC-3425 Chapter 2 Getting Started • 9 Step 1. Determine Overa ll Motor Configuration Before setting up the motion control system, the user m ust determine the desired motor configuration. The DMC-34 25 can cont rol standa rd brush or brushless servo m otors, sinusoi dally com mutated brushless m otors or stepper motors.
10 • Chapter 2 Getting Started DMC-3425 there is a power f ault during a firmware update. If EEPROM corruption occurs, your controller may not operate pr operly. In this case, install the UPGD Jumper and use the update fi rmware funct ion on the Galil Smart Terminal or WSDK to re-load the system firmware.
DMC-3425 Chapter 2 Getting Started • 11 Axis Configuration Jumpers When using the HC automatic configuration, ju mpers must be set to indicate which controller is the master and which cont rollers are slaves. De pending on the configuration of the jumpers, a controller will be set up as either the A (B) master or any of the axes slaves.
12 • Chapter 2 Getting Started DMC-3425 port is configured as DATASET. Your com puter or term inal must be c onfigured as a DATATERM for full dupl ex, no pa rity, 8 bit s data, one sta rt bit an d one stop bit. Your computer nee ds to be confi gured as a "dumb" term inal that sends ASCII characters as they are typed to the DMC-3425.
DMC-3425 Chapter 2 Getting Started • 13 Using Galil Software for Windows In order for the Windows software to communicate with a Galil controller, the controller must be registered in t he Windows Re gistry. To re gister a cont roller, y ou must spe cify the model of the controller, the comm unication parameters, a nd other in formation.
14 • Chapter 2 Getting Started DMC-3425 After selecting Next , the registry information will show a default Comm Port of 1 and a default Comm Speed of 19200 appea rs. This information s hould be cha nged as necessary to reflect the com puters Comm Port and the bau d rate set by t he controll er's baud ra te jumpers.
DMC-3425 Chapter 2 Getting Started • 15 the entry has been selected, click on t he OK butto n. If the s oftware has su ccessfully establ ished communications with the controller, the registry entry will be displayed at the top of the screen. If you are not properly communicating with the con t roller, the program will pause for 3-15 seconds.
16 • Chapter 2 Getting Started DMC-3425 After Next is pressed, the next screen will allow the IP address to be selected and assigned. Enter the IP address obtained from your system administrato r into the box IP Address . Select the button co rrespondin g to the prot ocol in which you wish to c ommunicat e with the cont roller, UD P or TCP.
DMC-3425 Chapter 2 Getting Started • 17 ASSIGN IP ADDRESS will check the controllers that are linke d to the network to see wh ich ones do not have an IP address. The program will then ask you whether you would like to assign the IP address you entered to the contro ller with the specifie d serial num ber.
18 • Chapter 2 Getting Started DMC-3425 A signal brea kout board of some type is strongl y recomm ended. If y ou are using a breakout board from a thi rd party, co nsult the document ation for th at board to insure proper system connection.
DMC-3425 Chapter 2 Getting Started • 19 The DMC-3425 accepts single-ende d or differential encoder fee dback with or without an index pulse. If you are not using the AMP-14 60 or the ICM-1460, you will need to consult the app endix for the encoder pinouts for conn ection to the motion cont roller.
20 • Chapter 2 Getting Started DMC-3425 The motor and the amplifier may be configured in the torque or the velocity mode. In the torqu e mode, the am plifier gain s hould be s uch that a 10 Volt signal gene rates the m aximum requ ired current.
DMC-3425 Chapter 2 Getting Started • 21 Once the para meters have been set, connect the a nalog motor command signal (ACMD) to the amplifier input. Issue the servo here command to turn the motors on.
22 • Chapter 2 Getting Started DMC-3425 ICM-1460 Encoder lines Motor 1 Motor 2 Power Supply VAMP+ AMPGND J2 Motor Figure 2.3 - System Connection s with the AMP-1460 Amplifier.
DMC-3425 Chapter 2 Getting Started • 23 ICM-1460 AMPEN GND ACMD 11 INHIBIT 4 +REF IN 2 SIGNALGND Red Wire Black Wire Red Connector Black Connector Description Connection Channel A+ MA+ Channel B+ MB+ Channel A- MA- Channel B- MB- Index - I- Index + I+ Gnd GND +5V 5V Figure 2.
24 • Chapter 2 Getting Started DMC-3425 generated by t he control ler. The fi rst signal i s the main co ntroller m otor output , ACMD. The second signal utilizes the sec ond DAC on the controller and is brought out on the ICM-14 60 at pin 38 (ACMD2).
DMC-3425 Chapter 2 Getting Started • 25 If Hall Sensors are Not Available: Without hall sensors, th e controller will not be able to estimate the commu tation phase of the brushless motor. In this case, the controller could become unstable until the commutation phase has been set using th e BZ command (see next st ep).
26 • Chapter 2 Getting Started DMC-3425 PRA=-1*(_BZ A) <CR> Move A motor cl ose to zero c ommutat ion phase BGA <CR> Begin motion on A axis AMA<CR> Wait for motion to complete on A axis BZA=-1 <CR> Drive motor to commutation pha se zero and leave motor on Method 3.
DMC-3425 Chapter 2 Getting Started • 27 The DMC-342 5 outputs STEPY signals on the IC M-1460 term inal labeled ERR OR, and outputs DIRX on the ICM-1460 terminal labeled AMPEN. X-axis connections are identical to the DMC-3415. Consult the docum entation fo r your step m otor am plifier for pr oper co nnections.
28 • Chapter 2 Getting Started DMC-3425 Step 10. Configure the Distributed Control System The final step in Getting Started with the DMC-3425 distribu ted control system is to configure the individual controllers as their respective axes in th e system.
DMC-3425 Chapter 2 Getting Started • 29 Step 1. Assign IP address t o master cont roller either through IA command o r through BOOTP utility in the Galil Software Registry. You may then burn this IP address into the master with the BN in order to keep this address during resets.
30 • Chapter 2 Getting Started DMC-3425 IOC-7007 ( 1) – 10.10. 50.26 Automatic Configuration Example The example b elow shows a t ypical setup fil e for the DM C-3425 distri buted cont rol system using the automatic configuration. This example is for a UDP system, with one handle used per slave.
DMC-3425 Chapter 2 Getting Started • 31 Note that only one of the 2 axes (per DMC-34 25) needs to be assigned with the CH command. 4. In order for the Master cont roller to be a ble to m ake decisions base d on the stat us of the slave/server controllers, it is necessary for the slaves t o generate dat a records giving thei r current status.
32 • Chapter 2 Getting Started DMC-3425 Design Examples Here are a few examples for tuning and using your con troller. These examples are shown fo r a single axis system only, but can b e modified t o test up to 8 axes withi n a distributed control netw ork.
DMC-3425 Chapter 2 Getting Started • 33 Example 5 - Velocity Control (Jogging) Objective: Drive the mo tor at specified speeds. Instruction Interpretation JG 10000 Set Jog Speed AC 100000 Set accele.
34 • Chapter 2 Getting Started DMC-3425 Example 9 - Motion Programs Motion programs may be edited an d stored in the memory. They may be executed at a later time. The instruction ED Edit mode moves the operation to the ed itor mode where the program may be written and edited .
DMC-3425 Chapter 2 Getting Started • 35 SP 5000 Set speed BGA Start motion AD 4000 Wait until A moved 4000 TPA Tell position EN End program To start the program, comm and: XQ #B Execute Program #B Example 12 - Control Variables Objective: To show ho w control variables may be utilized.
36 • Chapter 2 Getting Started DMC-3425 V2=_TP Set variable V2 to the current position JP#C,@ABS[V2]<2 Exit if error small MG V2 Report v alue of V2 V1=V1-1 Decrease Offset JP #B Return to top of program #C;EN End This program starts with a large offset and gradually decreases its v alue, resulting in decreasing error.
DMC-3425 Chapter 3 Connecting Ha rdware • 37 Chapter 3 Connecting Hardware Overview The DMC-34 25 provides digital i nputs for A and B forw ard limit , A and B reverse limit , A and B home input a nd abort input. The controller also has 3 unc ommitted, TTL inputs, 3 TTL outputs and 2 analog inputs (12-bit).
38 • Chapter 3 Connecting Hardware DMC-3425 state of the limit switches can also be interrogated with the TS command . For more details on TS, _LFx, _LRx, o r MG see the Com mand Reference. Home Switch Input Homing in puts are desig ned to pr ov ide mechanical reference points fo r a m otion cont rol appli cation.
DMC-3425 Chapter 3 Connecting Ha rdware • 39 NOTE: The effect of an Abort i nput is de pendent on the state of the off-on-e rror funct ion for eac h axis. If the Off- On-Error function is enabled for any given axis, the motor for that axis will be turn ed off when t he abort signal is generated.
40 • Chapter 3 Connecting Hardware DMC-3425 to the ground, GND, of the interconn ect and connect the GND of the interconnect to the GND of the amplifier. 37 - 40 Pin Cable ACMD AMPEN GND ICM-1460 +5V +12V SERVO MOTOR AMPLIFIER 7407 Open Collector Buffer.
DMC-3425 Chapter 3 Connecting Ha rdware • 41 TTL Outputs The DMC-342 5 provides thre e general use o utputs, an o utput compare a nd 4 status LED’s.
42 • Chapter 3 Connecting Hardware DMC-3425 THIS PAGE LEFT BLANK INTENTIONALLY.
DMC-3425 Chapter 4 Communication • 43 Chapter 4 Communication Introduction The DMC-3425 has one RS232 port and one Ethernet port. The RS-232 port is th e data set. The Ethernet port i s a 10Base-T li nk. The RS- 232 is a stan dard serial link with comm unication baud rates up to 19.
44 • Chapter 4 Communication DMC-3425 OFF ON 1200 Handshaking Modes The RS232 po rt is configu red for hard ware handshaki ng. In this m ode, the R TS and CTS l ines are used. The CTS line will go hi gh whenever the DMC- 3425 is not ready to receive additional characters.
DMC-3425 Chapter 4 Communication • 45 CAUTION: Be sure that there is on ly one BOOT-P server running. If your network has DHCP or BOOT-P running, it may automatically assign an IP address to the controller upon linking it to the network.
46 • Chapter 4 Communication DMC-3425 Host Comp u te r DMC-3425 A and B A xes DMC-3425 A and B A xes DMC-3425 A and B A xes DMC-3425 A and B A xes LOCAL OPERA TION RS-232 or Ethernet The DMC-34 25 supports Galil’s Dist ributed Control Syste m. This al lows up to 4 DMC-34 25s to be connected together as a single virtual 8-axis cont ro ller.
DMC-3425 Chapter 4 Communication • 47 situations; usi ng Local Mode for setup and t esting is use f ul since thi s isolates the c ontroller. Specific modes of m otion requi re operati on in Local M ode. Also, e ach controller can have a program , including the slave controllers.
48 • Chapter 4 Communication DMC-3425 Digital Outputs For outputs, the SB and CB comm ands are used t o command individual output ports, whil e the OP command is used for setting bytes of data. The SB and CB commands may be set globally through the master, while the OP comm and must be sent to the slave using the SA command.
DMC-3425 Chapter 4 Communication • 49 The Galil Registry has an option to disable the op ening of the multicast handle on the DMC-3425. By default this multicast hand le will be opened.
50 • Chapter 4 Communication DMC-3425 (1 – 8) and SlotNum is the slot number of the IOM output module to be written to (0 – 6). m is the decimal representation of the data written to the 4 (0 – 15) or 8 (0 – 255) output points of the IOM module.
DMC-3425 Chapter 4 Communication • 51 The DMC-342 5 provides thre e levels of M odbus comm unication. The first l evel allows t he user to create a raw packet and receive ra w data.
52 • Chapter 4 Communication DMC-3425 Note : This function is only available if the system has been configur ed using the au tomatic handle configuration co mmand, HC.
DMC-3425 Chapter 4 Communication • 53 UB general output bank 2 (DB-14064) I block UB general output bank 3 (DB-14064) I block UB general output bank 4 (DB-14064) I block UB general output bank 5 (DB.
54 • Chapter 4 Communication DMC-3425 SW C axis analog input C block UW D axis status D block UB D axis switches D block UB D axis stopcode D block SL D axis reference position D block SL D axis mot.
DMC-3425 Chapter 4 Communication • 55 SL H axis motor position H block SL H axis position error H block SL H axis auxiliary position H block SL H axis velocity H block SW H axis torque H block SW H .
56 • Chapter 4 Communication DMC-3425 Axis Status Information (2 Byte) BIT 15 BIT 1 4 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8 Move in Progress Mode of Motion PA or PR Mode of Motion PA only (FE) Find Edge in Progress Home (HM) in Progress 1st Phase of HM complete 2 nd Phase of HM complete or FI command issued Mode of Motion Coord.
DMC-3425 Chapter 4 Communication • 57 Using Third Party Software Galil supports ARP, BOOT-P, and Ping, which are u tilities for establishing Ethernet co nnections. ARP is an application that determines the Ethernet (hardw are) address of a device at a specific IP address.
58 • Chapter 4 Communication DMC-3425 THIS PAGE LEFT BLANK INTE NTIONALLY.
DMC-3425 Chapter 5 Command Basics • 59 Chapter 5 Command Basics Introduction The DMC-3425 pr ovides over 100 c ommands fo r specifying m o tion and machine parameters. Commands are includ ed to initiate action, interroga te status and configure the digital filter.
60 • Chapter 5 Command Basics DMC-3425 PR is the two character instruction for position rela tive. 4000 is the argument wh ich represents the required position value in counts. The <return> term inates the inst ruction. The space bet ween PR and 4000 is optional.
DMC-3425 Chapter 5 Command Basics • 61 Some comm ands have a n equivalent bi nary value. Binary com municati on mode can be e xecuted much faster than ASCII c ommands. Bina ry format can only be used when commands are sent from the PC and cannot be embedde d in an a pplication program.
62 • Chapter 5 Command Basics DMC-3425 Datafields Format Datafields must be consistent with the fo rmat byte and the axes byte. For example, the command PR 1000,, -5 00 would be A7 02 00 05 03 E8 FE.
DMC-3425 Chapter 5 Command Basics • 63 IT 93 CD be OB e9 FA 94 DT bf SB ea FV 95 ET c0 CB eb GR 96 EM c1 I I ec DP 97 EP c2 EI ed DE 98 EG c3 AL ee OF 99 EB c4 reserved ef GM 9a EQ c5 reserved f0 Re.
64 • Chapter 5 Command Basics DMC-3425 Interrogating the Controller Interrogation Commands The DMC-342 5 has a set of c ommands that directly interrogate the controller. When th e comman d is entered, the requested data is retur ned in dec imal form at on the next line followe d by a carri age return and line feed.
DMC-3425 Chapter 5 Command Basics • 65 The Comm and Reference de notes all comm ands which have an eq uivalent opera nd as "Used as an Operand ". Also, see description of operands in Chapter 7. Command Summary For a complete command sum mary, see Command Reference manual.
66 • Chapter 5 Command Basics DMC-3425 THIS PAGE LEFT BLANK INTENTIONALLY.
DMC-3425 Chapter 6 Programmin g Motion • 67 Chapter 6 Programming Motion Overview The DMC-3425 provides many modes of motion, including independent position ing and jogging, coordinated motion, electronic cam motion, and elect ronic gearing. Each one of these modes is discussed in t he following sections.
68 • Chapter 6 Programming Motion DMC-3425 Host Comp u ter DMC-3425 C and D A xes DMC-3425 A and B A xes DMC-3425 E and F A xes DMC-3425 G and H A xes GLOBA L OPERA TION RS-232 or Ethernet Ethernet The controll ers m ay operate unde r both Local and/or Global m ode.
DMC-3425 Chapter 6 Programmin g Motion • 69 Vector Motion 2-D motion path consisting of ar c segments and linear segments, such as engravin g or quilting. Vector velocity, vector acceleration and v ector deceleration ar e specified. Th e vector motion follows the prescribed velo city profile.
70 • Chapter 6 Programming Motion DMC-3425 Command Summary - Independent Axis COMMAND DESCRIPTI ON PR a,b,c,d Specifies relat ive distance PA a,b,c,d Specifies absolute position SP a,b,c,d Specifies.
DMC-3425 Chapter 6 Programmin g Motion • 71 10000 count/sec Speed 500000 counts/sec 2 Acceleration/Decelerat ion C-Axis 100 counts Position 5000 counts/sec Speed 500000 counts/sec Acceleration/Decelerat ion This example will specify a relative position move ment on A, B and C axes.
72 • Chapter 6 Programming Motion DMC-3425 Independent Jogging The jog m ode of mot ion is very flexi ble because speed, dir ection and acc eleration can be changed during motion. The user specifies the jog speed (JG), acceleration (AC), and the deceleration (DC) rate for each axis.
DMC-3425 Chapter 6 Programmin g Motion • 73 Instruction Interpretation #A Label AC 20000,,20000 Specify A,C acceler ation of 20000 cts / sec DC 20000,,20000 Specify A,C deceler ation of 20000 cts / .
74 • Chapter 6 Programming Motion DMC-3425 The Linear End (LE) com mand must be used to s p ecify the end of a linear m ove sequence. This command tells the controller to decel erate to a stop following the la st LI command. If an LE comm and is not given, an Abort AB1 must be used to abort the motion sequ ence.
DMC-3425 Chapter 6 Programmin g Motion • 75 LE End linear segments BGS Begin motion sequence EN Program end Changing Feedrate: The command VR n allows the feedrate, VS, to be s caled between 0 and 10 with a resolutio n of .0001 . This command takes effect immediately and causes VS to be scaled.
76 • Chapter 6 Programming Motion DMC-3425 Example Linear Interpolation Motion In this example, the AB system is required to perform a 90 ° turn. In order to slow th e speed around the corner, we use the AV 4000 trippoint, which slows th e speed to 1000 count/s.
DMC-3425 Chapter 6 Programmin g Motion • 77 POSITION A 0 0 40000 FEEDRATE 0 0.1 0.5 0.6 4000 36000 30000 27000 3000 VELOCITY A-AXIS VELOCITY B-AXIS POSITION B TIME (sec) TIME (sec) TIME (sec) Figure 6.2 - Linear Interpolatio n Example - Multiple Moves This exampl e makes a coordi nated linear m ove in the AB plane.
78 • Chapter 6 Programming Motion DMC-3425 COUNT=0 Initialize Counter N=10 Initialize position increm ent #LOOP LOOP VA [COUNT]=N Fill Array VA VB [COUNT]=N Fill Array VB N=N+10 Increment position C.
DMC-3425 Chapter 6 Programmin g Motion • 79 Up to 511 segments of CR or VP may be specified in a single sequ ence and must be ended with th e command VE. The motion can be initiated with a Begin Sequence (BGS) command. Once motion starts, addit ional segm ents may be added.
80 • Chapter 6 Programming Motion DMC-3425 Compensating for Differences in Encoder Resolution: By default , the DMC-34 25 uses a scale factor of 1:1 fo r the encoder resolution when used in vector mode. If this is not the case, t h e command, ES can be used to scale the encoder c ounts.
DMC-3425 Chapter 6 Programmin g Motion • 81 Example: Traverse the p ath shown in F ig. 6.3. Fee d rate is 20000 counts/sec. Plane of motion is AB Instruction Interpretation VM AB Specify motion plan.
82 • Chapter 6 Programming Motion DMC-3425 Electronic Gearing (Local Mode) This mode allows one axis to be electron ically geared to the other axis. The master may rotate in bo th directions and the geared axes will follow at the sp eci fied gear ratio.
DMC-3425 Chapter 6 Programmin g Motion • 83 For example, assum e that a gantry is driven by two a xes, A and B, one on each side. This requires the gantry m ode for strong coupling between the motors. The A-axis is the master and the B-axis is the follower.
84 • Chapter 6 Programming Motion DMC-3425 In the electronic cam mode, the position of the master is always expressed within one cycle. In this example, the position of a is always expressed in th e range between 0 and 6000. Similarly, the slave position is also redefined such that it starts at zero and ends at 1500.
DMC-3425 Chapter 6 Programmin g Motion • 85 ET[0]=,0 ET[1]=,3000 ET[2]=,2250 ET[3]=,1500 This specifies the ECAM tabl e. Step 5. Enable th e ECAM To enable the ECAM mode, use t he command EB n where n=1 e nables ECAM mode and n=0 disables EC AM mode.
86 • Chapter 6 Programming Motion DMC-3425 Master X 4000 2250 2000 6000 3000 1500 0 Figure 6.4 - Electronic Cam Example This disengages the slave ax is at a specified master position. If the parameter is outside the master cycle, the stopping is instantaneous.
DMC-3425 Chapter 6 Programmin g Motion • 87 Instruction Interpretation #SETUP Label EAA Select A as master EM 2000,1000 Cam cycles EP 20,0 Master position increments N = 0 Index #LOOP Loop to construct table from equa tion P = N ∗ 3.6 Note 3.6 = 0.
88 • Chapter 6 Programming Motion DMC-3425 ET[2]=,60 3rd point in the ECAM table ET[3]=,120 4th point in the ECAM table ET[4]=,140 5th point in the ECAM table ET[5]=,140 6th point in the ECAM table .
DMC-3425 Chapter 6 Programmin g Motion • 89 Contour Mode (Local Mode) The DMC-34 25 also provi des a contouring m ode. This mode allows a ny arbitrary posi tion cu rve to be prescribed for any motion axes. This is ideal for following co mputer generated paths such as parabolic, spherical or user-defined prof iles.
90 • Chapter 6 Programming Motion DMC-3425 Point 1 A=0 at T=0ms Point 2 A=48 at T=4ms Point 3 A=288 at T=12ms Point 4 A=336 at T=28ms The same trajectory m ay be re presented by the increm ents Incr.
DMC-3425 Chapter 6 Programmin g Motion • 91 Additional Commands The command, WC, is used as a trippoin t "When Comp lete" or “Wait for Contour Data”. This allows the DMC-3425 to use the next increment on ly when it is finished with the prev ious one.
92 • Chapter 6 Programming Motion DMC-3425 ω = 50 [1 - c os 2 π T/120] Figure 6.6 - Velocity Profile with Sinusoidal Acceleration The DMC-342 5 can com pute trigon ometric funct ions.
DMC-3425 Chapter 6 Programmin g Motion • 93 C=0 #C D=C+1 DIF[C]=POS[D]-POS[C] Compute the difference and store C=C+1 JP #C,C<15 EN End first program #RUN Program to run motor CMA Contour Mode DT3.
94 • Chapter 6 Programming Motion DMC-3425 #L Label D=C+1 DELTA=XPOS[D]-XPOS[C] Compute the difference DX[C]=DELTA Store diff erence in arr ay C=C+1 Increment index JP #L,C<500 Repeat until done .
DMC-3425 Chapter 6 Programmin g Motion • 95 The main use of the virtual axis is to s erve as a virt ual mast er in ECAM m odes, and to per form an unnecessary part of a vector mode.
96 • Chapter 6 Programming Motion DMC-3425 Stepper motor operation is specified by the command MT. The argument for MT is as follows: 2 specifies a st epper motor with ac tive low step output pulses -2 specifies a stepper motor with active high step output pulses 2.
DMC-3425 Chapter 6 Programmin g Motion • 97 Motion Profiler Stepper Smoothing Filter (Adds a Delay) Output Buffer Step Count Register (TD) Reference Position (RP) Output (To Stepper Driver) Motion C.
98 • Chapter 6 Programming Motion DMC-3425 Dual Loop (Auxiliary Encoder) The DMC-3415 prov ides an inter f ace for a second encode r except wh en configured f or stepper motor operation or circular co mpare. Please note, the DMC-3425 has only a single encoder per axis.
DMC-3425 Chapter 6 Programmin g Motion • 99 The continuous dual loop com bin es the two feedback signals to ac hieve stability. This method requires careful system tuni ng, and depen ds on the m agnitude of the backlash. However, once successful, this method com pensate s for the backlash continuously.
100 • Chapter 6 Programming Motion DMC-3425 PR v 2 *4 Correction move BGA Start correction JP#CORRECT Repeat #END EN Motion Smoothing The DMC-342 5 controll er allows the smoothing of the vel ocity profil e to re duce the mechani cal vibration of the system.
DMC-3425 Chapter 6 Programmin g Motion • 101 TIME VELOCI TY TIME ACCEL ERATI O N TIME ACCELERA TI O N W I T H SMOO THING TIME VELOCI TY W IT H SMOOT HING Figure 6.7 - Trapezoidal velocit y and smooth velocity profiles Homing The Find Edge (FE) and Home (HM) i nstructions may be used to hom e the motor to a mechanical reference.
102 • Chapter 6 Programming Motion DMC-3425 in the forward direction; +5V will cause it to start in the reverse direction. The CN command is used to de fine the p olarity of t he home input. 2. Upon detecting the home switch changing stat e, the m otor begins decelerating to a stop.
DMC-3425 Chapter 6 Programmin g Motion • 103 MOTION TO W AR D INDEX DIRECTION POSITION HOME SW ITCH _ HMA=1 _ HMA=0 POSITION MOT ION REVERSE TOW ARD HOME DIRECTION MOT ION BEGINS TOW ARD HOME DIRECTION VELOCIT Y VELOCIT Y VELOCIT Y POSITION POSITION INDEX PULSES POSITION Figure 6.
104 • Chapter 6 Programming Motion DMC-3425 Command Summary - Homing Operation COMMAND DESCRIPTI ON FE ABCD Find Edge Routine. This routin e monitors the Home Input FI ABCD Find Index Routine - This.
DMC-3425 Chapter 6 Programmin g Motion • 105 Example Instruction Interpretation #Latch Latch program JG,5000 Jog B BG B Begin motion on B axis AL B Arm Latch for B axis #Wait #Wait label for loop JP.
106 • Chapter 6 Programming Motion DMC-3425 THIS PAGE LEFT BLANK INTENTIONALLY.
DMC-3425 Chapter 7 Application Programming • 107 Chapter 7 Application Programming Overview The DMC-3425 p rovides a powerful prog ramming la nguage that allows users to customize the controller for their particular application. Programs can be downloaded into the DMC-3425 memory freeing the ho st comput er for othe r tasks.
108 • Chapter 7 Application Programming DMC-3425 The program memory size for each DMC-3425 is 80 c haracters per lin e and 500 lines long. Entering Programs The DMC-3425 has an internal editor th at may be used to create and edit prog rams in the controller's memory.
DMC-3425 Chapter 7 Application Programming • 109 After the Edit session is over, the user may list the entere d program using the LS c ommand. If no operand follows the LS co mmand, the entire program will be listed. Th e user can start listing at a specific line o r label usi ng the opera nd n.
110 • Chapter 7 Application Programming DMC-3425 AM Wait for motion com plete WT 2000 Wait 2 sec JP #START Jump to label START EN End of Program The above program moves A and B 10000 an d 20000 units. After the motion is complete, the motors rest for 2 seconds.
DMC-3425 Chapter 7 Application Programming • 111 VP 0,3000 Vector Position ‘ TOP LINE Comment - No Operation CR 1500,90,-180 Circle ‘ HALF CIRCLE MOTION Comment - No Operation VE Vector End ‘ .
112 • Chapter 7 Application Programming DMC-3425 The main thread differs from the others in the following ways: 1. Only the main thread, thread 0, may use the input command, IN. 2. When a utomati c subroutines a re implem ented for limit switc hes, positi on errors or comma nd errors, they are executed in thread 0.
DMC-3425 Chapter 7 Application Programming • 113 Trace Command The trace command causes th e controller to send each line in a program to the host com puter immediately prior to execution. Tracing is e n abled with the comm an d, TR1. TR0 turns th e trace function of f.
114 • Chapter 7 Application Programming DMC-3425 currently available. The comm and, DA?, will return the number of arrays whi ch can be c urrently defined.
DMC-3425 Chapter 7 Application Programming • 115 Program Flow Commands The DMC-3425 provides instruction s to control program flow. The D MC-3425 program sequencer normally executes program instructions sequentially. The program flow can be altered with the use of event triggers, trippoints, and conditio nal jump statements.
116 • Chapter 7 Application Programming DMC-3425 DMC-3425 Event Triggers Command Function AM A B C D E F G H or S Halts program execution until motion is complete on the specified axes or motion sequence(s). AM with no parameter te sts for motion complet e on all axes.
DMC-3425 Chapter 7 Application Programming • 117 Instruction Interpretation #TWOMOVE Label PR 2000 Position Command BGA Begin Motion AMA Wait for Motion Complete PR 4000 Next Position Move BGA Begin 2nd move EN End program Example- Set Output after Distance Set output bit 1 after a distance of 1000 co unts from the start of the move.
118 • Chapter 7 Application Programming DMC-3425 Instruction Interpretation #INPUT Program Label AI-1 Wait for input 1 low PR 10000 Position command BGA Begin motion EN End program Example - Set Out.
DMC-3425 Chapter 7 Application Programming • 119 PR -10000 New Position SP 30000 New Speed AC 150000 New Acceleration BGA Start Motion EN End Example- Define Output Waveform Using AT The followin g program causes Output 1 to be hig h fo r 10 m sec and low for 40 msec.
120 • Chapter 7 Application Programming DMC-3425 Logical operators: OPERATOR DESCRIPTION < less than > greater than = equal to <= less than or equal to >= greater than or equal to <> not equal Conditional Statements The conditional statement is satisfied if it evalu ates to any value other than zero.
DMC-3425 Chapter 7 Application Programming • 121 Examples If the condition for the JP command is satisfied , the controller bran ches to the specified label or line number and continues executing commands from this point. If the condition is not satisfied, the controller continues to execute th e next com mands in sequence.
122 • Chapter 7 Application Programming DMC-3425 NOTE: An ENDIF com mand m ust always be execute d fo r every IF command that has been execute d. It is recommended that the user not i nclude jump co mm ands inside IF cond itional statements sinc e this causes re-direction of command execu tion.
DMC-3425 Chapter 7 Application Programming • 123 JP#WAIT,(@IN[1]=0) | (@IN[2]=0) Loop until Input 1& 2 are not active RI0 End Input Interrupt Routine without restor ing trippoints Subroutines A subrouti ne is a g roup of i nstructions beginni ng with a label and ending with an end command (EN).
124 • Chapter 7 Application Programming DMC-3425 Automatic Subroutines for Monitoring Conditions Often it is desirable to monitor certain condition s continuously without tying up the host or DMC-3425 program seque nces. The DM C-3425 can monitor se veral im portant condi tions in the backgroun d.
DMC-3425 Chapter 7 Application Programming • 125 Example - Input Interrupt This simple program jogs the A and C motors (C motor is the first m o tor of the first slave controller of a distributed control system). When the first in put of the master (input 1), goes low, the controller will stop motion on both axes.
126 • Chapter 7 Application Programming DMC-3425 EN End main program #CMDERR Command error utility JP#DONE,_ED<>2 Check if error on line 2 JP#DONE,_TC<>6 Check if out of r ange MG ".
DMC-3425 Chapter 7 Application Programming • 127 XQ _ED3,_ED1,1 Skip invalid command ENDIF EN End of command error routine Example – Ethernet Communication Error This simple program executes in the DMC-3425 and indicates (via the serial port) whe n a communicat ion handle fails.
128 • Chapter 7 Application Programming DMC-3425 Bit-Wise Operators The mathematical ope rators & and | are bit-wise ope ra tors. The ope rator, &, is a Logical And.
DMC-3425 Chapter 7 Application Programming • 129 Functions FUNCTION DESCRIPTION @SIN[n] Sine of n (n in degrees, with range of -32768 to 32767 and 16-bit fractional resolution) @COS[n] Cosine of n (.
130 • Chapter 7 Application Programming DMC-3425 Programmable Variables The DMC-3425 allows the user to cr eate up to 12 6 variables. Eac h variable is defined by a nam e that can be up to eight c haracters. The nam e must star t with an alphabetic character, however, numbers are permitted in the rest of the name.
DMC-3425 Chapter 7 Application Programming • 131 Example - Using Variables for Joystick The example below reads the voltage of an A-B joystick an d assigns it to variables VA and VB to drive the mot.
132 • Chapter 7 Application Programming DMC-3425 _HMn *Returns status of Home Switch (equals 0 or 1) _LFn Returns status of Forward Limit switch input of axis ‘n’ (equals 0 o r 1) _LRn Returns s.
DMC-3425 Chapter 7 Application Programming • 133 DM SPEED[10] Dimension Speed Array SPEED[1]=7650.2 Assigns the first element of the array the value 7650.2 SPEED[1]= Returns array element value POSX[10]=_TPA Assigns the 11 th element the position of A.
134 • Chapter 7 Application Programming DMC-3425 Command Summary - Automatic Data Capture Command Description RA n[], m[],o[ ],p[ ] Selects up to four arrays for data capture.
DMC-3425 Chapter 7 Application Programming • 135 RC1 Start recording no w, at rate of 2 msec BG AB Begin motion #A;JP #A,RC=1 Loop until done MG "DONE" Print message EN End program #PLAY P.
136 • Chapter 7 Application Programming DMC-3425 Formatting Messages String variables can be form atted using the specifier , {Sn} where n is the number of characters, 1 thru 6. For example: MG STR {S3} This statement returns 3 chara cters of the stri ng variable named STR.
DMC-3425 Chapter 7 Application Programming • 137 Summary of Message Functions Function Description " " Surrounds text string {Fn.m} Formats numeric values in decima l n digi ts to the right of the decimal point and m digits to the left {P1}or {Ea} Send message to Main Ser ial Port or Ethernet Port {$n.
138 • Chapter 7 Application Programming DMC-3425 Position Format is specified by: PF m.n where m is the number of digits to the left of the decimal point (0 thru 10) and n is th e number of digits to the right of the decim al point (0 t hru 4) A negat ive sign f or m specifies hexa decimal format.
DMC-3425 Chapter 7 Application Programming • 139 Formatting Variables and Array Elements The Variable Form at (VF) comm and is used to format variables and array elements.
140 • Chapter 7 Application Programming DMC-3425 Converting to User Units Variables and arithmetic operations make it easy to inpu t data in d esired user units such as inches or RPM. The DMC-3425 po sition parameters such as PR, PA an d VP h ave units of quadrature counts.
DMC-3425 Chapter 7 Application Programming • 141 Example- Output Port Instruction Interpretation OP6 Sets outputs 2 and 3 of output port to high. A ll other bits are 0 . (2 1 + 2 2 = 6) OP0 Clears all bits of output port to zero OP 255 Sets all bits of output port to one.
142 • Chapter 7 Application Programming DMC-3425 Input Interrupt Function The DMC-3425 provides an input in terrupt function which causes the program to automatically execute the instructions following the #ININT labe l. This fu nction is enabled using the II m,n,o command.
DMC-3425 Chapter 7 Application Programming • 143 Instruction Interpretation #Points Label SP 7000 Speed AC 80000;DC 80000 Acceleration #Loop VP=@AN[1]*1000 Read and analog input, compute position PA.
144 • Chapter 7 Application Programming DMC-3425 The least signi ficant bit re presents bl ock 2 and the most significant bit represents block 9. The decim al value can be ca lculated by th e following formula. n = n 2 + 2*n 3 + 4*n 4 + 8*n 5 +16* n 6 +32* n 7 +64* n 8 +128* n 9 wher e n x represents the block.
DMC-3425 Chapter 7 Application Programming • 145 Argument Blocks Bits Description m 0 1-8 General Outputs a 2,3 17-32 Extended I/O b 4,5 33-48 Extended I/O c 6,7 49-64 Extended I/O d 8,9 65-80 Exten.
146 • Chapter 7 Application Programming DMC-3425 The program starts at a state t hat we define a s #A. Here t he controller waits for t he input pulse o n I1.
DMC-3425 Chapter 7 Application Programming • 147 Assume that all of the 3 axes are driven by l ead screws with 10 turns -per-inch pitch. Als o assume encoder resolution of 1000 lines per revolution.
148 • Chapter 7 Application Programming DMC-3425 BGS AMS PR,,80000 Raise C BGC AMC VP -37600,-16000 Return AB to start VE VS 200000 BGS AMS EN R=2 B C A 0 4 9.3 4 B A Figure 7.2 - Motor Velocity and the Associated Input/Output signals Speed Control by Joystick The speed of a motor is controlled by a joystick.
DMC-3425 Chapter 7 Application Programming • 149 The program reads the input voltage periodically and assigns its value to the variable VIN. To get a speed of 200,000 ct/sec for 10 volts, we select the speed as Speed = 20000 x VIN The corresponding velocity for the motor is assigned to the VEL v ariable.
150 • Chapter 7 Application Programming DMC-3425 THIS PAGE LEFT BLANK INTENTIONALLY.
DMC-3425 Chapter 8 Hardware & Software Protection • 151 Chapter 8 Hardware & Software Protection Introduction The DMC-3425 prov ides several h ardware and so ftwa re features to check for e rror conditions and to inhibit the motor on erro r.
152 • Chapter 8 Hard ware & Software Protection DMC-3425 4. There is a failure with the output IC that drives the error signal. Input Protection Lines Abort - A l ow input stops commanded motion instantly without a c ontrolled d eceleration. For any axis in which the Off-On-Error func tion is enab led, the amplifiers will be disabled.
DMC-3425 Chapter 8 Hardware & Software Protection • 153 Example: DP0,0, Define Position BL -2000,-4000 Set Reverse position limit FL 2000,4000 Set Forward position limit JG 2000,2000 Jog BG AB Begin Execution of the above ex ample will cause the motor to slew at the given jog speed until the forward position limit is reached.
154 • Chapter 8 Hard ware & Software Protection DMC-3425 Limit Switch Routine The DMC-3425 provides forward and reverse limit switches that inhibit motion in the resp ective direction. There is also a special lab el for au tomatic execution of a limit switch sub routine.
DMC-3425 Chapter 9 Troubleshooting • 155 Chapter 9 Troubleshooting Overview The following discussion may help you get your system to work. Potential problem s have been divided i n to grou ps as follow s: 1. Installation 2. Comm unication 3. Stability and Compensation 4.
156 • Chapter 9 Troubleshooting DMC-3425 Communication Symptom Cause Remedy Using terminal emulator, cannot communicate with con troller. Selected comport in correct Try another comport Same as above Selected baud rate incorrect Check to b e sure that baud rate same as dip switch settings on controller, chang e as necessar y.
DMC-3425 Chapter 10 Theory of Op eration • 157 Chapter 10 Theory of Operation Overview The followin g discussion c o vers the ope ration of m otion cont rol system s. A typical m otion control system consists of the elements shown in Fig 10.1. COMPUTER CONTROLLER DRIVER MOTOR ENCODER Figure 10.
158 • Chapter 10 Theory of Operation DMC-3425 The highest level of control is the motion program. This can be stored in the host co mputer or in the controller. This program describes the tasks in terms of the motors that need to be controlled, the distances and the spee d.
DMC-3425 Chapter 10 Theory of Op eration • 159 Y POSITION X POSITION Y VELOCITY X VELOCITY TIME Figure 10.3 - Velocity and Position Profiles Operation of Closed-Loop Systems To understand the operatio n of a servo system, we may compare it to a familiar closed-loop operation, adjusting the water temperature in the shower.
160 • Chapter 10 Theory of Operation DMC-3425 it too slowly, the temperature response will be slow, causing discomfort. Such a slow reaction is called over damped resp onse. The results may be worse i f we turn the faucet too fast. The overreacti on results in temperature oscillations.
DMC-3425 Chapter 10 Theory of Op eration • 161 Motor-Amplifier The motor amplifier may be configured in three modes: 1. Voltage Drive 2. Current Dri ve 3. Velocity Loop The operation and modeling in the three mode s is as follows: Voltage Drive The amplifier is a voltage source with a gain of Kv [V/V].
162 • Chapter 10 Theory of Operation DMC-3425 where Kt a nd J are as de fined previ ously. For e xample, a current amplifier with K a = 2 A/V with the motor described by the previous example will have the transfer function: P/V = 1000/s 2 [rad/V] If the motor is a DC brushless motor, it is driven by an amplifier that performs the commutation.
DMC-3425 Chapter 10 Theory of Op eration • 163 K v 1/K e (ST m +1)(ST e +1) 1 S V EW P VOLTAGE SOURCE K a K t JS 1 S V IW P CURRENT SOURCE 1 S V WP VELOCITY LOOP 1 K g (ST 1 +1) Figure 10.6 - Mathemati cal model of the mo tor a nd amplifier in three operational modes Encoder The encoder generates N pulses per rev olution.
164 • Chapter 10 Theory of Operation DMC-3425 DAC The DAC or D -to-A conve rter convert s a 16-bit number t o an analog voltage. T he input range of the numbers is 65536 and the outpu t voltage range is +/-10V or 20V. Therefor e, the effective gain of the DAC is K= 20/65536 = 0.
DMC-3425 Chapter 10 Theory of Op eration • 165 K = 160 A = 0.9 C = 1 a = 250 rad/s and the equivalent continuou s filter, G(s), is G(s) = [16 + 0.144s + 10 00/s} ∗ 250/ (s+250) The notch filter has two complex zeros, Z and z, and two complex poles, P and p.
166 • Chapter 10 Theory of Operation DMC-3425 Motor M(s) = P/I = Kt/Js2 = 500/s 2 [rad/A] Amp K a = 4 [Amp/V] DAC K d = 0.000 3 [V/count] Encoder K f = 4N/2 π = 318 [count/rad] ZOH 2000/(s+2000 ) Digital Filter KP = 12.5, KD = 245, T = 0.001 Therefore, D(z) = 1030 (z-0.
DMC-3425 Chapter 10 Theory of Op eration • 167 1 4 0.1 50 200 2000 W (rad/s) Magnitude Figure 10.8 - Bode plo t of the open loop transfer function For the given example, the cros sover frequency wa s computed numerically resulting in 200 rad/s. Next, we determine the ph ase of A( s) at the cross over frequency.
168 • Chapter 10 Theory of Operation DMC-3425 K t Nm/A Torque constant J = 2.10 -4 kg.m 2 System moment of inertia R = 2 Ω Motor resistance K a = 2 Amp/Volt Current amplifier gain N = 1000 Counts/rev Encoder line density The DAC of the DMC-2x00 outputs +/-1 0V for a 14-bit command of +/-8192 counts.
DMC-3425 Chapter 10 Theory of Op eration • 169 However, sinc e A(s) = L(s) G(s) then it follows that G(s) must have magnitude of |G(j500)| = |A(j 500)/L(j50 0)| = 160 and a phase arg [G(j500) ] = ar.
170 • Chapter 10 Theory of Operation DMC-3425 Equivalent Filter Form DMC-2x00 Digital D(z) =[K( z-A/z) + Cz/(z-1)] ∗ (1-B)/ (Z-B) Digital D(z) = [4 KP + 4 KD(1-z -1 ) + KI/ 2(1-z -1 )] ∗ (1 -B)/.
DMC-3425 Appendices • 171 Appendices Electrical Specifications Servo Control ACMD Amplifier Command: +/-10 Volts analog signal. Resolution 16-bit DAC or .0003 Vo lts . 3 mA ma xi mu m A+,A-,B+,B-,IDX+,IDX - E ncoder TTL compatible, but can accept up to +/-12 Volts.
172 • Appendices DMC-3425 Long Term Phase-locked, better than .005% Short Te rm System dependent Position Range: +/-21474836 47 counts per mo ve Velocity Range: Up to 12,000,000 counts/sec servo; 3,000,000 p ulses/sec-stepper Velocity Resolution: 2 counts/sec Motor Command Resolutio n: 1 6 bit or 0.
DMC-3425 Appendices • 173 J3 DMC-3425-Stepper General I/O; 37- PIN D-type 1 Reset 1 20 PWMB 2 SIGNB 21 PWMA 3 Output 3 22 Output 2 4 Output 1 23 Circular Com pare 5 Analog 1 24 Analog 2 6 Main I nde.
174 • Appendices DMC-3425 J1 RS232 Main port: DB-9 Pin Male: PC Galil 1 DCD 1 RT S 2 RX 2 TX 3 TX 3 RX 4 DTR 4 CT S 5 GND 5 GND 6 DSR 6 RTS 7 RTS 7 CTS 8 CTS 8 RTS 9 RI 9 -- Pin-Out Description OUTPUTS DESCRIPTION Analog Mot or Command +/- 10 Volt range signal for driving amplifier.
DMC-3425 Appendices • 175 Abort input A low input stops commanded motion instan tly without a controlled deceleration. Also aborts motion program. Reset input A low input resets the state of the processor to its power-o n condition. The previously sav ed state of the controlle r, along with param eter values, and saved sequenc es are restored.
176 • Appendices DMC-3425 Rev A-F Terminal# Rev G Terminal# Label I/O Description 1 1 +12V 4 O +12 Volts 2 2 -12V 4 O -12 Volts 3 3 AMPEN/SIGNY 5 O Amplifier enable X axis or Y Axis Sign Output for .
DMC-3425 Appendices • 177 4 The screw terminals for ACMDX an d ACMDY can provide access to 2 se ts of signals, depending on the placement of the 2 jum pers on JP3. 5 If the Opto-isolated input option is used, the output compare is NOT brought out to the ICM-1460.
178 • Appendices DMC-3425 IN[x] (To control l er) TO CONTROLLER RP3 / RP1 = 4.7K OHM S ICM-1460 CONNECTIONS IN[x] OPTO-COMMON RP2 / RP4 = 2.2K VCC Figure A-1 Opto-isolated outputs: The signal “O UT[x]" belo w is one of the isolat ed digital ou tputs where x stands for the digit al output terminals.
DMC-3425 Appendices • 179 64 Extended I/O of the DMC-3425 Controller The DMC-3425 con troller offers 64 extended I/O points, which can be interfaced to Grayhill an d OPTO-22 I/ O mounti ng racks. T hese I/O point s can be co nfigured as i nputs or o utputs in 8 bit increments through soft ware.
180 • Appendices DMC-3425 For exampl e, if blocks 2 and 3 are to be outputs, t h en n is 3 and the comm and, CO3, s hould be issued . Note: This calculation is identical to the formula: n = n 2 + 2*n 3 + 4*n 4 + 8*n 5 +16* n 6 +32* n 7 +64* n 8 +128* n 9 where n x represents the block.
DMC-3425 Appendices • 181 For exam ple, if block 8 i s configure d as an output, the foll owing com mand may be issued: OP 7,,,,7 This command will set bits 1,2,3 (block 0) and b its 65 ,66,67 (block 8) to 1. Bits 4 through 8 and bits 68 through 80 will be set to 0.
182 • Appendices DMC-3425 2. I/O 5 48 0 4. I/O 5 47 1 6. I/O 5 46 2 8. I/O 5 45 3 10. I/O 5 44 4 12. I/O 5 43 5 14. I/O 5 42 6 16. I/O 5 41 7 18. GND - - - 20. GND - - - 22. GND - - - 24. GND - - - 26. GND - - - 28. GND - - - 30. GND - - - 32. GND - - - 34.
DMC-3425 Appendices • 183 2. I/O 9 80 7 4. I/O 9 79 6 6. I/O 9 78 5 8. I/O 9 77 4 10. I/O 9 76 3 12. I/O 9 75 2 14. I/O 9 74 1 16. I/O 9 73 0 18. GND - - - 20. GND - - - 22. GND - - - 24. GND - - - 26. GND - - - 28. GND - - - 30. GND - - - 32. GND - - - 34.
184 • Appendices DMC-3425 0 1 3 2 5 7 6 4 J5 100 pin hig h density connect or Banks 0 and 1 provide high power outp ut capability. Banks 2 -7 are standard banks.
DMC-3425 Appendices • 185 Configuring Hardware Banks The extended I/O on the DMC-34x5 with DB-14064 is configured using the CO comman d. The banks of buffers on the IOM-1964 are configure d to mat ch by inserting the appropri ate IC’s and resistor packs.
186 • Appendices DMC-3425 Input Circuit 1/4 NEC2505 To DMC-3425* I/O DMC-3425* GND 1/8 RPx4 I/OC n I/O n x = bank number 0-7 n = input number 17-80 Figure A-5 – Input Circuit Connections to this op tically isolated input circuit are done in a sinking or sourcing configuration, referring t o the directi on of cu rrent.
DMC-3425 Appendices • 187 Note that the current t hrough the di gital input should be kept belo w 3 mA in or der to mi nimize the power dissipated in the resistor pack. This will help prevent circu it failures. The resistor pack RPx4 is standard 1.5 k ohm t hat is suitable f or power sup ply voltages up to 5.
188 • Appendices DMC-3425 The power outputs must b e connected in a driving configuration as shown on the prev ious page. Here are the voltage outputs t o expect afte r the Clear Bit and Set Bit com.
DMC-3425 Appendices • 189 Output Command Result CB n V out = GND iso SB n V out = V iso The resistor pack RPx 3 is removed to provi de op en collector outputs. The sam e calculations for maximum source current a nd low le vel voltage a pplie s as in the above circuit.
190 • Appendices DMC-3425 • Maxim um sink current : 2mA Relevant DMC Commands CO n Configures the 64 bits of extende d I/O in 8 banks of 8 bit s each. n = n 2 + 2*n 3 + 4*n 4 + 8*n 5 + 16*n 6 + 32*n 7 + 64*n 8 + 128*n 9 where n x is a 1 or 0, 1 f or outp uts and 0 f or inputs .
DMC-3425 Appendices • 191 22 22 I/O65 I/O bit 65 6 23 21 OUTC65-72 Out common for I/O 65-72 6 24 24 I/OC65-72 I/O common for I/O 65-72 6 25 23 I/O64 I/O bit 64 5 26 26 I/O63 I/O bit 63 5 27 25 I/O62.
192 • Appendices DMC-3425 67 65 I/O30 I/O bit 30 1 68 68 I/O29 I/O bit 29 1 69 67 I/O28 I/O bit 28 1 70 70 I/O27 I/O bit 27 1 71 69 I/O26 I/O bit 26 1 72 72 I/O25 I/O bit 25 1 73 71 OUTC25-32 Out co.
DMC-3425 Appendices • 193 Coordinated Motion - Mathematical Analysis The terms of c o ordinated m otion are best explained i n terms of the vector m otion. The vector velocity , V s , which is also known as the feed rate, is the vector sum of the velocities along the A and B axes, V a and V b .
194 • Appendices DMC-3425 Figure A-10 - X-Y Motion Path The first line describes the straight line v ector segment between points A and B. The next segment is a circular arc, which starts at an angle of 180 ° and trave rses -90 ° . Finally, the third line describes the linear segment between points C and D.
DMC-3425 Appendices • 195 T V S VA s a == = 100000 2000000 00 5 . The slew tim e, Ts, is given by T D V S T s s a = − = - = 35708 100000 0 05 0 307 .
196 • Appendices DMC-3425 List of Other Publications "Step by Step Design of M otion Co ntrol Sys tems" by Dr. Jacob Tal "Motion Control App lications" by Dr.
DMC-3425 Appendices • 197 Contacting Us Galil Motion Control 3750 Atherton Road Rocklin, CA 95765 Phone: 916-62 6-0101 Fax: 916- 626-0102 Internet address: support@gal ilmc.
198 • Appendices DMC-3425 WARRANTY All products manufactured by Galil Motion Control are warranted against defects in materials and workmanshi p. The wa rranty peri od for controller boards is 1 y ear. The w arranty pe riod for all other products is 180 days.
DMC-3425 Index • 199 Index 64 Extended I/O of t he DMC-342 5 Contoll er, 179 Abort, 73, 79 , 151, 153, 171 Off-On-E rror, 18, 39, 15 1, 153 Stop Motion, 74 , 79, 125, 154 Absolute Po sition, 69–70.
200 • Index DMC-3425 Different ial Encode r, 19, 21, 156 Digital Filter, 59, 164– 65, 167–69 Gain, 8 Digital Inpu t, 39, 129, 141 Digital Output, 129, 140 Clear Bit, 140 Dip Switch Address, 133.
DMC-3425 Index • 201 Jumper, 156 Jumpers, 43 Keyword, 120 , 128, 130 , 131–32 TIME, 132–33 Label, 73–74, 78, 87, 94, 102, 105, 107–14, 116–25 , 131, 137, 140–4 3, 147, 149, 153 LIMSWI, 1.
202 • Index DMC-3425 SDK, 27, 108 Selecting Address, 133–34 , 197 Serial Port, 12 Servo Design Kit, 8 SDK, 27, 108 Set Bit, 140 Sine, 69, 87, 129 Single-Ende d, 6, 19, 21 Slew, 69, 101, 116, 118, .
Un punto importante, dopo l’acquisto del dispositivo (o anche prima di acquisto) è quello di leggere il manuale. Dobbiamo farlo per diversi motivi semplici:
Se non hai ancora comprato il Galil DMC-3425 è un buon momento per familiarizzare con i dati di base del prodotto. Prime consultare le pagine iniziali del manuale d’uso, che si trova al di sopra. Dovresti trovare lì i dati tecnici più importanti del Galil DMC-3425 - in questo modo è possibile verificare se l’apparecchio soddisfa le tue esigenze. Esplorando le pagine segenti del manuali d’uso Galil DMC-3425 imparerai tutte le caratteristiche del prodotto e le informazioni sul suo funzionamento. Le informazioni sul Galil DMC-3425 ti aiuteranno sicuramente a prendere una decisione relativa all’acquisto.
In una situazione in cui hai già il Galil DMC-3425, ma non hai ancora letto il manuale d’uso, dovresti farlo per le ragioni sopra descritte. Saprai quindi se hai correttamente usato le funzioni disponibili, e se hai commesso errori che possono ridurre la durata di vita del Galil DMC-3425.
Tuttavia, uno dei ruoli più importanti per l’utente svolti dal manuale d’uso è quello di aiutare a risolvere i problemi con il Galil DMC-3425. Quasi sempre, ci troverai Troubleshooting, cioè i guasti più frequenti e malfunzionamenti del dispositivo Galil DMC-3425 insieme con le istruzioni su come risolverli. Anche se non si riesci a risolvere il problema, il manuale d’uso ti mostrerà il percorso di ulteriori procedimenti – il contatto con il centro servizio clienti o il servizio più vicino.