Manuale d’uso / di manutenzione del prodotto TMS320DM643x del fabbricante Texas Instruments
Vai alla pagina of 98
TMS320DM643x DMP DSP Subsystem Reference Guide Literature Number: SPRU978E March 2008.
2 SPRU978E – March 2008 Submit Documentation Feedback.
Contents Preface ............................................................................................................................... 9 1 Introduction .........................................................................................
5.3.2 Steps for Changing PLL2 Frequency .................................................................. 44 5.4 PLL Controller Registers ......................................................................................... 48 5.4.1 Peripheral ID Register (PID) .
7.3.1 Module Clock ON/OFF .................................................................................. 79 7.3.2 Module Clock Frequency Scaling ...................................................................... 79 7.3.3 PLL Bypass and Power Down .
List of Figures 1-1 TMS320DM643x DMP Block Diagram .................................................................................. 12 2-1 TMS320C64x+ Megamodule Block Diagram .........................................................................
List of Tables 4-1 System Clock Modes and Fixed Ratios for Core Clock Domains .................................................... 30 4-2 Example PLL1 Frequencies and Dividers (27 MHZ Clock Input) .................................................... 32 4-3 Example PLL2 Frequencies (Core Voltage = 1.
List of Tables 8 SPRU978E – March 2008 Submit Documentation Feedback.
Preface SPRU978E – March 2008 Read This First About This Manual This document describes the DSP subsystem in the TMS320DM643x Digital Media Processor (DMP). Notational Conventions This document uses the following conventions. • Hexadecimal numbers are shown with the suffix h.
TMS320C6000, C6000 are trademarks of Texas Instruments. Read This First 10 SPRU978E – March 2008 Submit Documentation Feedback.
Chapter 1 SPRU978E – March 2008 Introduction Topic .................................................................................................. Page 1.1 Introduction .............................................................................
www.ti.com 1.1 Introduction 1.2 Block Diagram JT AG Interface System Control PLLs/Clock Generator Input Clock(s) Power/Sleep Controller Pin Multiplexing DSP Subsystem C64x+ t DSP CPU 32 KB L1 Pgm 128 KB L2 RAM 80 KB L1 Data BT .
www.ti.com 1.3 DSP Subsystem in TMS320DM643x DMP 1.3.1 Components of the DSP Subsystem DSP Subsystem in TMS320DM643x DMP In the DM643x DMP, the DSP subsystem is responsible for performing digital signal processing for digital media applications.
Introduction 14 SPRU978E – March 2008 Submit Documentation Feedback.
Chapter 2 SPRU978E – March 2008 TMS320C64x+ Megamodule Topic .................................................................................................. Page 2.1 Introduction ...................................................................
www.ti.com 2.1 Introduction 2.2 TMS320C64x+ CPU Introduction The C64x+ Megamodule ( Figure 2-1 ) consists of the following components: • TMS320C64x+ CPU • Internal memory controllers: – Level-1 .
www.ti.com Cache control Memory protect Bandwidth mgmt L1P RAM/ cache 256 Bandwidth mgmt Memory protect Cache control 256 L2 256 RAM/ Cache ROM 256 Instruction fetch file A file B C64x+ CPU 256 Cache .
www.ti.com 2.3 Memory Controllers 2.3.1 L1P Controller Memory Controllers The C64x+ Megamodule implements a two-level internal cache-based memory architecture with external memory support. Level 1 memory is split into separate program memory (L1P memory) and data memory (L1D memory).
www.ti.com C64x+ CPU Fetch Path Data Path W rite Buf fer L1D Cache L1D SRAM L1 Data L1P Cache L1P SRAM L1 Program L2 Cache L2 SRAM L2 Unified Data/Program Memory External Memory 64 bit 256 bit 128 bit 256 bit 256 bit 2 x 64 bit Legend: addressable memory cache memory data paths managed by cache controller 256 bit Memory Controllers Figure 2-2.
www.ti.com 2.3.2 L1D Controller 2.3.3 L2 Controller Memory Controllers The L1D controller is the hardware interface between level 1 data memory (L1D memory) and the other components in the C64x+ Megamodule (for example, C64x+ CPU, L2 controller, and EMC).
www.ti.com 2.3.4 External Memory Controller (EMC) 2.3.5 Internal DMA (IDMA) Memory Controllers The external memory controller (EMC) is the hardware interface between the external memory map (external memory and external registers) and the other controllers in the C64x+ Megamodule (for example, L1P controller, L1D controller, and L2 controller).
www.ti.com 2.4 Internal Peripherals 2.4.1 Interrupt Controller (INTC) 2.4.2 Power-Down Controller (PDC) Internal Peripherals This C64x+ Megamodule includes the following internal peripherals: • Interrupt controller (INTC) • Power-down controller (PDC) This section briefly describes the INTC and PDC.
www.ti.com 2.4.3 Bandwidth Manager Internal Peripherals The bandwidth manager provides a programmable interface for optimizing bandwidth among the requesters for resources, which include the following.
TMS320C64x+ Megamodule 24 SPRU978E – March 2008 Submit Documentation Feedback.
Chapter 3 SPRU978E – March 2008 System Memory Topic .................................................................................................. Page 3.1 Memory Map ............................................................................. 26 3.
www.ti.com 3.1 Memory Map 3.1.1 DSP Internal Memory (L1P, L1D, L2) 3.1.2 External Memory 3.1.3 Internal Peripherals 3.1.4 Device Peripherals Memory Map Refer to your device-specific data manual for memory-map information. This section describes the configuration of the DSP internal memory in the DM643x DMP that consists of L1P, L1D, and L2.
www.ti.com 3.2 Memory Interfaces Overview 3.2.1 DDR2 External Memory Interface 3.2.2 External Memory Interface 3.2.2.1 Asynchronous EMIF Interface 3.2.2.2 NAND Interface Memory Interfaces Overview This section describes the different memory interfaces of DM643x DMP.
System Memory 28 SPRU978E – March 2008 Submit Documentation Feedback.
Chapter 4 SPRU978E – March 2008 Device Clocking Topic .................................................................................................. Page 4.1 Overview ..............................................................................
www.ti.com 4.1 Overview 4.2 Clock Domains 4.2.1 Core Domains Overview The DM643x DMP requires one primary reference clock. The primary reference clock can be either crystal input or driven by external oscillators.
www.ti.com DSP Subsystem SYSCLK1 SYSCLK3 SCR EDMA VPFE VPBE DACs DDR2 PHY DDR2 VTP DDR2 Memory controller PLLDIV2 (/10) PLLDIV1 (/2) BPDIV PLL Controller 2 PLL Controller 1 PLLDIV2 (/3) PLLDIV3 (/6) P.
www.ti.com 4.2.2 Core Frequency Flexibility Clock Domains The core frequency domain clocks are supplied by the PLL controller 1 (PLLC1). These domain clocks are flexible, to a degree, within the limitations specified in the device-specific data manual.
www.ti.com 4.2.3 DDR2/EMIF Clock Clock Domains The DDR2 interface has a dedicated clock driven from PLL2. This is a separate clock system from the PLL1 clocks provided to other components of the system.
www.ti.com 4.2.4 I/O Domains Clock Domains The I/O domains refer to the frequencies of the peripherals that communicate through device pins. In many cases, there are frequency requirements for a peripheral pin interface that are set by an outside standard and must be met.
www.ti.com 4.2.5 Video Processing Back End 3 2 0 1 0 1 2 PLLDIV2 CLK54 PLL2 DDR_CLKx2 PCLK VPBECLK MXI CLK_VENC CLK_DAC 1 0 venc_sclk_enc CG OSD VENC DACs venc_div2 venc_sclk_osd VPSS VPSS_CLKCTL.MUXSEL CLK54 CLK_VENC CLK_DAC 0 27 MHz Of f 27 MHz 1h 54 54 MHz 54 MHz 2h Of f VPBECLK VPBECLK 3h Of f PCLK Off PLLDIV1 PLLC1 SYSCLKBP VPSS_CLKCTL.
www.ti.com Clock Domains Table 4-6. Possible Clocking Modes VPSS_CLKCTL.MUXSEL Bit Clocking Mode Description 0 MXI mode Both the VENC and the DAC get their clock from PLLC1 SYSCLKBP, which defaults to the MXI 27 MHZ crystal input divide by 1. 1h PLL2 mode The PLL2 (divided-down) generates a 54 MHZ clock.
Chapter 5 SPRU978E – March 2008 PLL Controller Topic .................................................................................................. Page 5.1 PLL Module .............................................................................
www.ti.com 5.1 PLL Module 5.2 PLL1 Control PLL Module The DM643x DMP has two PLLs (PLL1 and PLL2) that provide clocks to different parts of the system. PLL1 provides clocks (though various dividers) to most of the components of the DM643x DMP. PLL2 is dedicated to the DDR2 port and components for the video processing subsystem (VPSS).
www.ti.com PLLDIV1(/1) PLLDIV3(/6) PLLDIV2(/3) SYSCLK1 (CLKDIV1Domain) SYSCLK3 (CLKDIV6Domain) SYSCLK2 (CLKDIV3Domain) 1 0 PLLM PLL 0 1 BPDIV CLKMODE CLKIN OSCIN PLLEN SYSCLKBP (VPSS-VPBR ClockSource) OBSCLK (CLKOUT0Pin) PLLOUT AUXCLK (CLKINDomain) OSCDIV1 5.
www.ti.com 5.2.2.1 Initialization to PLL Mode from PLL Power Down PLL1 Control If the PLL is powered down (PLLPWRDN bit in PLLCTL is set to 1), you must follow the procedure below to change PLL1 frequencies. The recommendation is to stop all peripheral operation before changing the PLL1 frequency, with the exception of the C64x+ DSP and DDR2.
www.ti.com 5.2.2.2 Changing PLL Multiplier PLL1 Control If the PLL is not powered down (PLLPWRDN bit in PLLCTL is cleared to 0) and the PLL stabilization time is previously met (step 7 in Section 5.2.2.1 ), follow this procedure to change PLL1 multiplier.
www.ti.com 5.2.2.3 Changing SYSCLK Dividers PLL1 Control This section discusses the software sequence to change the SYSCLK dividers. The SYSCLK divider change sequence is also referred to as GO operation, as it involves hitting the GO bit (GOSET bit in PLLCMD) to initiate the divider change.
www.ti.com 5.3 PLL2 Control PLLDIV2 (/10) PLLDIV1 (/2) 1 0 PLLM PLL 0 1 BPDIV CLKMODE CLKIN OSCIN PLLEN PLL2_SYSCLK2 (VPSS−VPBE) PLL2_SYSCLK1 (DDR2 PHY) PLL2_SYSCLKBP (DDR2 VTP) PLLOUT 5.3.1 Device Clock Generation PLL2 Control PLL2 provides the clock from which the DDR2 memory controller and optional VPBE clocks are derived.
www.ti.com 5.3.2 Steps for Changing PLL2 Frequency 5.3.2.1 DDR2 Considerations When Modifying PLL2 Frequency 5.3.2.1.1 PLL2 Frequency Change Steps When DDR2 Memory Controller is In Reset 5.3.2.1.2 PLL2 Frequency Change Steps When DDR2 Memory Controller is Out of Reset PLL2 Control The PLLC2 is programmed similarly to the PLLC1.
www.ti.com 5.3.2.2 Initialization to PLL Mode from PLL Power Down PLL2 Control If the PLL is powered down (PLLPWRDN bit in PLLCTL is set to 1), you must follow the procedure below to change PLL2 frequencies. 1. Select the clock mode by programming the CLKMODE bit in PLLCTL.
www.ti.com 5.3.2.3 Changing PLL Multiplier PLL2 Control If the PLL is not powered down (PLLPWRDN bit in PLLCTL is cleared to 0) and the PLL stabilization time is previously met (step 7 in Section 5.3.2.2 ), follow this procedure to change PLL2 multiplier.
www.ti.com 5.3.2.4 Changing SYSCLK Dividers PLL2 Control This section discusses the software sequence to change the SYSCLK dividers. The SYSCLK divider change sequence is also referred to as GO operation, as it involves hitting the GO bit (GOSET bit in PLLCMD) to initiate the divider change.
www.ti.com 5.4 PLL Controller Registers PLL Controller Registers Table 5-3 lists the base address and end address for the PLL controllers. Table 5-4 lists the memory-mapped registers for the PLL and reset controller. See the device-specific data manual for the memory address of these registers.
www.ti.com 5.4.1 Peripheral ID Register (PID) 5.4.2 Reset Type Status Register (RSTYPE) PLL Controller Registers The peripheral ID register (PID) is shown in Figure 5-3 and described in Table 5-5 .
www.ti.com 5.4.3 PLL Control Register (PLLCTL) PLL Controller Registers The PLL control register (PLLCTL) is shown in Figure 5-5 and described in Table 5-7 .
www.ti.com 5.4.4 PLL Multiplier Control Register (PLLM) 5.4.5 PLL Controller Divider 1 Register (PLLDIV1) PLL Controller Registers The PLL multiplier control register (PLLM) is shown in Figure 5-6 and described in Table 5-8 .
www.ti.com 5.4.6 PLL Controller Divider 2 Register (PLLDIV2) 5.4.7 PLL Controller Divider 3 Register (PLLDIV3) PLL Controller Registers The PLL controller divider 2 register (PLLDIV2) is shown in Figure 5-8 and described in Table 5-10 . Divider 2 controls divider for SYSCLK2.
www.ti.com 5.4.8 Oscillator Divider 1 Register (OSCDIV1) PLL Controller Registers The oscillator divider 1 register (OSCDIV1) is shown in Figure 5-10 and described in Table 5-12 . The oscillator divider 1 controls divider for OBSCLK, dividing down from the MXI/CLKIN clock.
www.ti.com 5.4.9 Bypass Divider Register (BPDIV) PLL Controller Registers The bypass divider register (BPDIV) is shown in Figure 5-11 and described in Table 5-13 . Bypass divider controls divider for SYSCLKBP, dividing down from the MXI/CLKIN clock. Figure 5-11.
www.ti.com 5.4.10 PLL Controller Command Register (PLLCMD) 5.4.11 PLL Controller Status Register (PLLSTAT) PLL Controller Registers The PLL controller command register (PLLCMD) is shown in Figure 5-12 and described in Table 5-14 . PLLCMD contains the command bit for the GO operation.
www.ti.com 5.4.12 PLL Controller Clock Align Control Register (ALNCTL) PLL Controller Registers The PLL controller clock align control register (ALNCTL) is shown in Figure 5-14 and described in Table 5-16 . ALNCTL indicates which SYSCLKs need to be aligned for proper device operation.
www.ti.com 5.4.13 PLLDIV Ratio Change Status Register (DCHANGE) PLL Controller Registers The PLLDIV ratio change status register (DCHANGE) is shown in Figure 5-15 and described in Table 5-17 . DCHANGE indicates if the SYSCLK divide ratio has been modified.
www.ti.com 5.4.14 Clock Enable Control Register (CKEN) PLL Controller Registers The clock enable control register (CKEN) is shown in Figure 5-16 and described in Table 5-18 . CKEN provides clock enable control for miscellaneous output clocks. CKEN is only applicable to PLLC1, not PLLC2.
www.ti.com 5.4.15 Clock Status Register (CKSTAT) PLL Controller Registers The clock status register (CKSTAT) is shown in Figure 5-17 and described in Table 5-19 .
www.ti.com 5.4.16 SYSCLK Status Register (SYSTAT) PLL Controller Registers The SYSCLK status register (SYSTAT) is shown in Figure 5-18 and described in Table 5-20 . Indicates SYSCLK on/off status. Actual default is determined by actual clock on/off status, which depends on the D[n]EN bit in PLLDIV[n] default.
Chapter 6 SPRU978E – March 2008 Power and Sleep Controller Topic .................................................................................................. Page 6.1 Introduction ...............................................................
www.ti.com 6.1 Introduction dsp local reset dsp module reset dsp clock DSP dsp power peripheral power peripheral module reset MODx peripheral clock Always on domain PSC clks PLLC RESET VDD POR Emulation Introduction The Power and Sleep Controller (PSC) is responsible for managing transitions of system power on/off, clock on/off, and reset.
www.ti.com 6.2 Power Domain and Module Topology Power Domain and Module Topology The DM643x DMP includes one power domain--the AlwaysOn power domain. The AlwaysOn power domain is always on when the chip is on. The AlwaysOn domain is powered by the V DD pins of the DM643x DMP (see the device-specific data manual).
www.ti.com 6.3 Power Domain and Module States 6.3.1 Power Domain States 6.3.2 Module States Power Domain and Module States Note: The effects of DSP local reset and DSP module reset have not been fully validated; therefore, these resets are not supported and should not be used.
www.ti.com 6.3.3 Local Reset 6.4 Executing State Transitions 6.4.1 Power Domain State Transitions 6.4.2 Module State Transitions Executing State Transitions In addition to module reset (described in Section 6.3.2 ), the DSP CPU can be reset using a special local reset.
www.ti.com 6.5 IcePick Emulation Support in the PSC 6.6 PSC Interrupts 6.6.1 Interrupt Events IcePick Emulation Support in the PSC The PSC supports IcePick commands that allow IcePick aware emulation tools to have some control over the state of power domains and modules.
www.ti.com 6.6.1.1 Module State Emulation Events 6.6.1.2 Local Reset Emulation Events 6.6.2 Interrupt Registers PSC Interrupts The DM643x DMP is a single-processor device. The C64x+ CPU must not program its own module state. The C64x+ CPU module state can only be programmed by an external host (for example, PCI, HPI).
www.ti.com 6.6.3 Interrupt Handling 6.7 PSC Registers PSC Registers Handle the PSC interrupts as described in the following procedure: First, enable the interrupt. 1. Set the EMUIHBIE bit and the EMURSTIE bit in MDCTL39 to enable the interrupt events that you want.
www.ti.com 6.7.1 Peripheral Revision and Class Information Register (PID) 6.7.2 Interrupt Evaluation Register (INTEVAL) PSC Registers The peripheral revision and class information (PID) register is shown in Figure 6-2 and described in Table 6-6 . Figure 6-2.
www.ti.com 6.7.3 Module Error Pending Register 1 (MERRPR1) 6.7.4 Module Error Clear Register 1 (MERRCR1) PSC Registers The module error pending register 1 (MERRPR1) is shown in Figure 6-4 and described in Table 6-8 . Only the C64x+ CPU (module 39) can have an error condition, as it is the only module with IcePick support.
www.ti.com 6.7.5 Power Domain Transition Command Register (PTCMD) 6.7.6 Power Domain Transition Status Register (PTSTAT) PSC Registers The power domain transition command register (PTCMD) is shown in Figure 6-6 and described in Table 6-10 . Figure 6-6.
www.ti.com 6.7.7 Power Domain Status 0 Register (PDSTAT0) PSC Registers The power domain status n register (PDSTAT0) is shown in Figure 6-8 and described in Table 6-12 .
www.ti.com 6.7.8 Power Domain Control 0 Register (PDCTL0) PSC Registers The power domain control n register (PDCTL0) is shown in Figure 6-9 and described in Table 6-13 .
www.ti.com 6.7.9 Module Status n Register (MDSTATn) PSC Registers The module status n register (MDSTAT0-MDSTAT39) is shown in Figure 6-10 and described in Table 6-14 .
www.ti.com 6.7.10 Module Control n Register (MDCTLn) PSC Registers The module control n register (MDCTL0-MDCTL39) is shown in Figure 6-11 and described in Table 6-15 .
Power and Sleep Controller 76 SPRU978E – March 2008 Submit Documentation Feedback.
Chapter 7 SPRU978E – March 2008 Power Management Topic .................................................................................................. Page 7.1 Overview .............................................................................
www.ti.com 7.1 Overview 7.2 PSC and PLLC Overview Overview In many applications, there may be specific requirements to minimize power consumption for both power supply (or battery) and thermal considerations. There are two components to power consumption: active power and leakage power.
www.ti.com 7.3 Clock Management 7.3.1 Module Clock ON/OFF 7.3.2 Module Clock Frequency Scaling 7.3.3 PLL Bypass and Power Down Clock Management The module clock on/off feature allows software to disable clocks to module individually, in order to reduce the module's active power consumption to 0.
www.ti.com 7.4 DSP Sleep Mode Management 7.4.1 DSP Sleep Modes 7.4.2 DSP Module Clock ON/OFF 7.4.2.1 DSP Module Clock ON DSP Sleep Mode Management The C64x+ DSP supports sleep mode management to reduc.
www.ti.com 7.4.2.2 DSP Module Clock Off 7.5 3.3 V I/O Power Down 7.6 Video DAC Power Down 3.3 V I/O Power Down In the clock Disable state, the DSP’s module clock is disabled, while DSP reset remains de-asserted. This state is typically used to disable the DSP clock to save power.
Power Management 82 SPRU978E – March 2008 Submit Documentation Feedback.
Chapter 8 SPRU978E – March 2008 Interrupt Controller The C64x+ Megamodule includes an interrupt controller (INTC) to manage CPU interrupts. The interrupt controller interfaces the system events to the CPU's interrupt and exception inputs.
Interrupt Controller 84 SPRU978E – March 2008 Submit Documentation Feedback.
Chapter 9 SPRU978E – March 2008 System Module Topic .................................................................................................. Page 9.1 Overview ................................................................................
www.ti.com 9.1 Overview 9.2 Device Identification 9.3 Device Configuration 9.3.1 Pin Multiplexing Control 9.3.2 Device Boot Configuration Status Overview The TMS320DM643x DMP System Module is a system-level module containing status and top-level control logic required by the device.
www.ti.com 9.4 3.3 V I/O Power-Down Control 9.5 Peripheral Status and Control 9.5.1 Timer Control 9.5.2 VPSS Clock and DAC Control 9.5.3 DDR2 VTP Control 9.5.4 HPI Control 3.3 V I/O Power-Down Control The VDD3P3V_PWDN register controls power to the 3.
www.ti.com 9.6 Bandwidth Management 9.6.1 Bus Master DMA Priority Control Bandwidth Management In order to determine allowed connections between masters and slaves, each master request source must have a unique master ID (mstid) associated with it. The master ID for each DM643x DMP master is shown in Table 9-1 .
www.ti.com 9.6.2 EDMA Transfer Controller Configuration 9.7 Boot Control Boot Control Each switched central resource (SCR) performs prioritization based on the priority level of the master that sends the command. Each bus master's priority is programmed in the chip-level Bus Master Priority Control Registers (MSTPRI0 or MSTPRI1).
System Module 90 SPRU978E – March 2008 Submit Documentation Feedback.
Chapter 10 SPRU978E – March 2008 Reset Topic .................................................................................................. Page 10.1 Overview .................................................................................. 92 10.
www.ti.com 10.1 Overview 10.2 Reset Pins 10.3 Device Configurations at Reset Overview There are different types of reset in the TMS320DM643x DMP. The types of reset differ by how they are initiated and/or by their effect on the chip. Each type is briefly described in Table 10-1 .
www.ti.com 10.4 DSP Reset 10.4.1 DSP Local Reset 10.4.2 DSP Module Reset 10.4.2.1 Software Reset Disable (SwRstDisable) DSP Reset Note: The effects of DSP local reset and DSP module reset have not been fully validated; therefore, these resets are not supported and should not be used.
www.ti.com 10.4.2.2 Synchronous Reset (SyncReset) DSP Reset • Host: Assert the DSP local reset (Optional) – Clear the LRST bit in MDCTL39 to 0. This step is optional. This step asserts the DSP local reset, and is included here so that the DSP does not start running immediately upon it is subsequently enable by the host.
Chapter 11 SPRU978E – March 2008 Boot Modes The TMS320DM643x DMP can boot from either asynchronous EMIF/NOR Flash directly or from internal boot ROM, as determined by the setting of the device boot and configuration pins.
Boot Modes 96 SPRU978E – March 2008 Submit Documentation Feedback.
Appendix A SPRU978E – March 2008 Revision History Table A-1 lists the changes made since the previous version of this document. Table A-1. Document Revision History Reference Additions/Modifications/Deletions Figure 6-1 Added Note. Section 6.3 Added Note.
IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Un punto importante, dopo l’acquisto del dispositivo (o anche prima di acquisto) è quello di leggere il manuale. Dobbiamo farlo per diversi motivi semplici:
Se non hai ancora comprato il Texas Instruments TMS320DM643x è un buon momento per familiarizzare con i dati di base del prodotto. Prime consultare le pagine iniziali del manuale d’uso, che si trova al di sopra. Dovresti trovare lì i dati tecnici più importanti del Texas Instruments TMS320DM643x - in questo modo è possibile verificare se l’apparecchio soddisfa le tue esigenze. Esplorando le pagine segenti del manuali d’uso Texas Instruments TMS320DM643x imparerai tutte le caratteristiche del prodotto e le informazioni sul suo funzionamento. Le informazioni sul Texas Instruments TMS320DM643x ti aiuteranno sicuramente a prendere una decisione relativa all’acquisto.
In una situazione in cui hai già il Texas Instruments TMS320DM643x, ma non hai ancora letto il manuale d’uso, dovresti farlo per le ragioni sopra descritte. Saprai quindi se hai correttamente usato le funzioni disponibili, e se hai commesso errori che possono ridurre la durata di vita del Texas Instruments TMS320DM643x.
Tuttavia, uno dei ruoli più importanti per l’utente svolti dal manuale d’uso è quello di aiutare a risolvere i problemi con il Texas Instruments TMS320DM643x. Quasi sempre, ci troverai Troubleshooting, cioè i guasti più frequenti e malfunzionamenti del dispositivo Texas Instruments TMS320DM643x insieme con le istruzioni su come risolverli. Anche se non si riesci a risolvere il problema, il manuale d’uso ti mostrerà il percorso di ulteriori procedimenti – il contatto con il centro servizio clienti o il servizio più vicino.