Manuale d’uso / di manutenzione del prodotto Network Device DAQ S del fabbricante National Instruments
Vai alla pagina of 173
DAQ S Series NI 6124/6154 User Manual DAQ-STC2 S Series Simultaneous Samp li ng Multifunction Input/Output Devices NI 6124/6154 User Manual August 2008 372613A-01.
Support Worldwide Technical Support and Product Info rmation ni.com National Instruments Corporate Headquarters 11500 North Mopac Expressway Aust in, Texas 78759-3504 USA Tel: 512 683 0100 Worldwide O.
Important Information Warranty NI 6124 and NI 61 54 devices are warranted ag ainst defects in m a terials an d workmanship for a p eri od of one year fro m the date o f shipme nt, as evidenced by receipts or other document ation.
Compliance Compliance with FCC/Canada Radio Frequency Interference Regulations Determining FCC Class The Federal Communications Commission (FCC) has rules to protect wireless co mmunications from inte rference. The FCC places digital electronics into two classes.
© National Instruments Corporation v NI 6124/6154 User Manual Contents About This Manual Conventions ............ .............. .............. .............. .............. ................. .............. .............. .. x i Related Documentation .
Contents NI 6124/6154 User Manual vi ni.com Connecting Analog Input Signals ................. .............. .............. ................. .............. ...... 4-6 Types of Signal Sources ................. .............. .............. ...........
Contents © National Instruments Corporation vii NI 6124/6154 User Manual Other Timing Requirements.................. ................. .............. ............. 5-7 AO Sample Clock Timebase Signal .............. ............... .............. ....
Contents NI 6124/6154 User Manual viii ni.com Period Measurement ........ .............. .............. .............. ................. .............. ...... 7-6 Single Period Measurement ................ ................. ............... ...........
Contents © National Instruments Corporation ix NI 6124/6154 User Manual Frequency Output Signal ................. ................. .............. ............... ................ .. 7-30 Routing Frequ ency Output to a Termin al .............. ......
Contents NI 6124/6154 User Manual x ni.com Real-Time System Integration (RTSI) .............. .............. ............... .............. .............. ... 9-4 RTSI Connector Pinout ....................... ................. .............. .........
© National Instruments Corporation xi NI 6124/6154 User Manual About This Manual The NI 6124/6154 User Manual co ntains informatio n about u sing the National Instruments S Series NI 6124 and NI 6154 data acquisi tion (D A Q) devices with NI-D A Qmx 8.
About This Manual NI 6124/6154 User Manual xii ni.com Related Documentation Each application software package an d driv er includes inform ation about writing applications for taking measur ements and controlling measurement devices. The follo wing references to documents assume you have NI-D A Qmx 8.
About This Manual © National Instruments Corporation xiii NI 6124/6154 User Manual • VI and Function Referen ce»Measurement I/O VIs and Functions —Describes the LabVIEW NI-D A Qmx VIs and properties.
About This Manual NI 6124/6154 User Manual xiv ni.com T o create an application in V isual C + +, V isual C# , or V is ual Basic .NET , follo w these general steps: 1. In V isual St udio .NET , select File»New»Project to la unch the New Project dialog box.
About This Manual © National Instruments Corporation xv NI 6124/6154 User Manual Device Documentation and Specifications The NI 6124 Specifications and NI 61 54 Specifications docu ments contain all specifications for the NI 6124 and NI 6154 S Series devices respecti vely .
© National Instruments Corporatio n 1-1 NI 6124/6154 User Manual 1 Getting Started The NI 6124 and NI 6154 are simultaneous sampling multifunct ion I/O devices (S Series) that use the DAQ-STC2 ASIC.
Chapter 1 Getting Started NI 6124/6154 User Manual 1-2 ni.com Installing the Hardware The DAQ Getting Started Guide contains non-software-specific information about how to install PCI and PXI Ex press devices, as well as accessories and cables.
Chapter 1 Getting Started © National Instruments Corporatio n 1-3 NI 6124/6154 User Manual Device Pinouts Refer to Appendix A , Device-Specific Information , for NI 6124 and NI 6154 device pinouts.
© National Instruments Corporatio n 2-1 NI 6124/6154 User Manual 2 DAQ System Over view Figure 2-1 shows a typical DAQ system setup, which includes transducers, signal conditioning, cabl es that co nnect the various devices to the accessories, the S Series device, and the programming soft ware.
Chapter 2 DAQ System Over view NI 6124/6154 User Manual 2-2 ni.com DAQ Hardware DAQ hardware digitizes sign als, performs D/A conversions to generate analog output signals, an d measures and controls digital I/O signals. The following section s contain more info rmat ion about specific component s of the DAQ hardware.
Chapter 2 DAQ System Overview © National Instruments Corporatio n 2-3 NI 6124/6154 User Manual (NI 6154 Only) S Series isolated hardware also includes bank and channel-to-channel isolation.
Chapter 2 DAQ System Over view NI 6124/6154 User Manual 2-4 ni.com • T wo flexible 32-bit counter/timer modules with hard ware gating • Digital wav eform acquisition and generatio n • Static DIO.
Chapter 2 DAQ System Overview © National Instruments Corporatio n 2-5 NI 6124/6154 User Manual External Calibration External calibration is a process to ad just the device relative to a traceable, high precision calibration standard.
Chapter 2 DAQ System Over view NI 6124/6154 User Manual 2-6 ni.com • If you are using other application software, refer to Common Senso rs in the NI-DAQmx Help or the LabVIE W Help in version 8.
© National Instruments Corporatio n 3-1 NI 6124/6154 User Manual 3 I/O Connector This chapter contains information about the S Series I/O connector. Refer to one of the following sections, d epending.
Chapter 3 I/O Connector NI 6124/6154 User Manual 3-2 ni.com NI 6154 I/O Connector Signal Descriptions (NI 6154 Only) Table 3-2 describes the signals found on the NI 6154 I/O connector. For more information ab out these signals, refer to the NI 6154 Specifications .
Chapter 3 I/O Connector © National Instruments Corporatio n 3-3 NI 6124/6154 User Manual +5 V Power Source (NI 6124 Only) The +5 V pins on the I/O connector supply +5 V power. You can use these pins, referenced to D GN D, to power ex ternal circuitry.
© National Instruments Corporatio n 4-1 NI 6124/6154 User Manual 4 Analog Input Figure 4-1 shows the analog input circuitry of each channel of the non-isolated S Series (NI 6124) device.
Chapter 4 Analog Inpu t NI 6124/6154 User Manual 4-2 ni.com On S Series de vices, each channel uses its o wn instrumentation amplif ier , FIFO, multipl exer (mux), and A/ D con verter (ADC) to achiev e simultaneous data acquisition.
Chapter 4 Analog Input © National Instruments Corporatio n 4-3 NI 6124/6154 User Manual Caution Exceeding the differential an d common-mode input rang es distorts the input signals. Exceeding the maximum input v oltage rating can damage the de vice and the computer .
Chapter 4 Analog Inpu t NI 6124/6154 User Manual 4-4 ni.com W orking V oltage Range On most S Series devices, the PGIA operates normally by amplifying signals of interest while reject ing common-mode si gnals under the following three conditions: • The common-mode voltage (V cm ), which is equivalent to subtracting AI <0.
Chapter 4 Analog Input © National Instruments Corporatio n 4-5 NI 6124/6154 User Manual Hardware-timed acquisitions ha ve se veral adv antages o ver software-timed acquisitions: – The time between samples can be much shor ter . – The timing be tween samples can be det erministic.
Chapter 4 Analog Inpu t NI 6124/6154 User Manual 4-6 ni.com Analog Input T riggering Analog input supports two differen t triggering actions: start and reference. An analog or digital hardware trigg er can initiate these actions. All S Series devices support dig ital triggering, and som e also support analog triggering.
Chapter 4 Analog Input © National Instruments Corporatio n 4-7 NI 6124/6154 User Manual Refer to the Analog Input Termi nal Configuration section for descriptions of the input mo des.
Chapter 4 Analog Inpu t NI 6124/6154 User Manual 4-8 ni.com Figure 4-3. Differential Connection fo r Ground-Referenced Signals on Non-Isolated Devices Figure 4-4 shows ho w to connect a ground-referenced signal source to a channel on an isolated S Series device.
Chapter 4 Analog Input © National Instruments Corporatio n 4-9 NI 6124/6154 User Manual W ith these types of connections, the in strumentation amplifier rejects both the common-mode noise in th e signal and the ground potential dif ference between the signal source and the device ground, sho wn as V cm in these fig u r es .
Chapter 4 Analog Inpu t NI 6124/6154 User Manual 4-10 ni.com Figure 4-5 shows a bias resistor conn ected between AI 0 – and the floating signal source ground. This resistor pr ovides a return path for the bias current. A value of 10 k Ω to 100 k Ω is usually suf ficient.
Chapter 4 Analog Input © National Instruments Corporation 4-11 NI 6124/6154 User Manual • High Source Impedance —For lar ger source impedances, this connection leaves the DIFF signal path significantly off balance.
Chapter 4 Analog Inpu t NI 6124/6154 User Manual 4-12 ni.com Minimize noise pickup and maximize m easurement accuracy by taking the follo wing precautions. • Use dif ferential AI connections to reject common-mode noise. • Use individually shielded, twisted-pair wires to connect AI signals to the device.
Chapter 4 Analog Input © National Instruments Corporation 4-13 NI 6124/6154 User Manual Analog Input T iming Signals An acquisition with posttrigger dat a allows you to view data that is acquired after a trigger event is r eceived. A typical posttrigger DAQ sequence is shown in Figure 4-7.
Chapter 4 Analog Inpu t NI 6124/6154 User Manual 4-14 ni.com If an AI Reference T rigger (ai/Refere nceTrigger) pulse occurs before the specified number of pretrigger sample s are acquired, the trigger pulse is ignored.
Chapter 4 Analog Input © National Instruments Corporation 4-15 NI 6124/6154 User Manual Sev eral other internal signals can b e routed to AI Sampl e Clock throu gh RT S I . R e f e r t o Device Routing in MAX in the NI-DAQmx Help or the LabVIEW Help in version 8.
Chapter 4 Analog Inpu t NI 6124/6154 User Manual 4-16 ni.com Figure 4-9 shows the relationship of AI Sample Clock to AI Start T rigger . Figure 4-9. AI Sample Clock and AI Start T rigger AI Sample Clo.
Chapter 4 Analog Input © National Instruments Corporation 4-17 NI 6124/6154 User Manual Using an Inte rnal Source One of the following internal signal s can drive AI Convert Clock: • AI Con vert Cl.
Chapter 4 Analog Inpu t NI 6124/6154 User Manual 4-18 ni.com AI Hold Complete Event Signal The AI Hold Complete Event (ai/HoldCom pleteEvent) signal generates a pulse after each A/D conversion begins. You can route ai/HoldCompleteEvent out to any PFI <0.
Chapter 4 Analog Input © National Instruments Corporation 4-19 NI 6124/6154 User Manual Using an Analog Source When you use an analog trigger source, the acquisiti on begins on the first rising edge of the Analog Comparison Event signal. Routing AI Start T rigger to an Output T erminal You can route AI Start Trigger out to any PFI <0.
Chapter 4 Analog Inpu t NI 6124/6154 User Manual 4-20 ni.com When the reference trigger occurs, the D A Q de vice continues to write samples to the buf fer until the buf fer contains the number of posttrigger samples desired. Figure 4-10 sho ws the final b uffer .
Chapter 4 Analog Input © National Instruments Corporation 4-21 NI 6124/6154 User Manual Getting Started with AI Applications in Software You can use the S Series device in the following analog inpu t.
© National Instruments Corporatio n 5-1 NI 6124/6154 User Manual 5 Analog Output Figure 5-1 shows the analog output circuitry of a non -isolated S Series (NI 6124) device. Figure 5-1. Non-Isolated S Series Device Analog Output Block Diagram Figure 5-2 shows the analog output circuitry of an isolated S Series (NI 6154) device.
Chapter 5 Analog Output NI 6124/6154 User Manual 5-2 ni.com The main blocks featured in the S Se ries analog output circuitry are as follows: • AO FIFO —The A O FIFO enables analog output wav eform generation.
Chapter 5 Analog Output © National Instruments Corporatio n 5-3 NI 6124/6154 User Manual • Hardware-Timed Generations —W ith a hardware-timed generation, a digital hardware signal control s the rate of the generation. This signal can be generated internally on your device or pro vided externally .
Chapter 5 Analog Output NI 6124/6154 User Manual 5-4 ni.com W ith FIFO regeneration, the entire buf fer is do wnloaded to the FIFO and regenerated from there. After the data is downloaded, new data cannot be written to the FIFO. T o use FIFO regeneration, the entire b uf fer mu st fi t within the FIFO size.
Chapter 5 Analog Output © National Instruments Corporatio n 5-5 NI 6124/6154 User Manual Figure 5-3 shows ho w A O 0 and A O 1 are wired on a non-isolated S Series device. Figure 5-3. Analog Output Connections for Non-Isolated S Series Devices Figure 5-4 shows how A O 0 is wired on an i solated S Series device.
Chapter 5 Analog Output NI 6124/6154 User Manual 5-6 ni.com W aveform Generation T iming Signals There is one AO Sample Clock that causes all AO channels to update simultaneously. Figure 5-5 summarizes the timing and routin g options provided by the analog output timing engine.
Chapter 5 Analog Output © National Instruments Corporatio n 5-7 NI 6124/6154 User Manual Using an External Source You can use a signal connected to any PFI or RTSI <0..6> pi n as the source of AO Sample Clock. Figure 5-6 sho ws the timing requirem ents of the AO Sample Clock source.
Chapter 5 Analog Output NI 6124/6154 User Manual 5-8 ni.com Figure 5-7 shows the relationship of the AO Sample Clock signal to the A O Start T rigger sig nal.
Chapter 5 Analog Output © National Instruments Corporatio n 5-9 NI 6124/6154 User Manual Figure 5-8 shows the timing requirem ents for the A O Sample Clock T imebase signal. Figure 5-8. AO Sample Clock Timeba se Timing Requirements The maximum allowed frequency is 20 MHz, with a minimum pulse width of 10 ns high or lo w .
Chapter 5 Analog Output NI 6124/6154 User Manual 5-10 ni.com Figure 5-9 shows the timing requirements of the AO Start Trigger digital source. Figure 5-9. AO Start T rigger Timing Requirements Using an Analog Source When you use an analog t rigger source, the waveform generation begins on the first rising edge of the Anal og Comparison Event signal.
Chapter 5 Analog Output © National Instruments Corporation 5-11 NI 6124/6154 User Manual Using a Digital Source To use ao/Pause Trigger, specify a s ource and a polarity. The source can be an external signal connected to any PFI or RTSI <0..6> pin.
© National Instruments Corporatio n 6-1 NI 6124/6154 User Manual 6 Digital I/O Refer to one of the following sections, depending on your device: • Digital I/O for Non-Isolated Devices —NI 61 24 devices ha ve eight lines of bidirectional DIO lines on Port 0, and 16 PFI signals that can function as static DIO lines.
Chapter 6 Digital I/O NI 6124/6154 User Manual 6-2 ni.com Figure 6-1 shows the circuitry of one DIO line. Each DIO line is similar . The follo wing sections provide inform ation about the various parts of the DIO circuit. Figure 6-1. Non-Isolated S Series Digital I/O Cir cuitry The DIO terminals are named P0.
Chapter 6 Digital I/O © National Instruments Corporatio n 6-3 NI 6124/6154 User Manual Digital W aveform T riggering for Non-Isolated Devices (NI 6124 Only) NI 6124 devices do not have an independent DI or DO Start Trigger for digital waveform acquisition or generation.
Chapter 6 Digital I/O NI 6124/6154 User Manual 6-4 ni.com Y ou can configure each DIO line to be an output, a static i nput, or a digital wa veform acquisition in put. DI Sample Clock Signal (NI 6124 Only) Use the DI Sample Clock (di/Sampl eClock) signal to sample the P0.
Chapter 6 Digital I/O © National Instruments Corporatio n 6-5 NI 6124/6154 User Manual •P X I _ S T A R • Analog Comparison Event (an analog trigger) Y ou can sample data on the rising or falling edge of DI Sample Clock. Routing DI Sample Clock to an Output T erminal You can route DI Sample Clock out to any PFI terminal.
Chapter 6 Digital I/O NI 6124/6154 User Manual 6-6 ni.com Using an Internal Source To use DO S ample Clock with an inte rnal source, specify the signal source and the polarity of the signal.
Chapter 6 Digital I/O © National Instruments Corporatio n 6-7 NI 6124/6154 User Manual I/O Protection for Non-Isolated Devices (NI 6124 Only) Each DIO and PFI signal is protected against overvoltage, undervoltage, and overcurr ent conditions as well as ESD events.
Chapter 6 Digital I/O NI 6124/6154 User Manual 6-8 ni.com DI Change Detection for Non-Isolated Devices (NI 6124 Only) You can configure the DAQ device to detect changes in the DIO signals. Figure 6-3 shows a block diagram of the DIO change detection circuitry.
Chapter 6 Digital I/O © National Instruments Corporatio n 6-9 NI 6124/6154 User Manual The Change Detection Event signal also can be used to detect changes on digital output ev ents.
Chapter 6 Digital I/O NI 6124/6154 User Manual 6-10 ni.com Figure 6-4. Digita l I/O Connections Caution Exceeding the maximum input v oltage ra tings, which are listed in the specifications document for each non-isolated D A Q-STC2 S Series device, can damage the D A Q device and the computer .
Chapter 6 Digital I/O © National Instruments Corporation 6-11 NI 6124/6154 User Manual Digital I/O for Isolated Devices (NI 6154 Only) S Series isolated devices contain ten lines of unidirection al DIO signals. The d igital I/O p ort is comprised of six digital inputs and four digital ou tputs, all bank-isolated .
Chapter 6 Digital I/O NI 6124/6154 User Manual 6-12 ni.com I/O Protection for Isolated Devices (NI 6154 Only) Each DIO and PFI signal is protected against over-voltage, under-voltage, and over-current co nditions as well as ESD events.
Chapter 6 Digital I/O © National Instruments Corporation 6-13 NI 6124/6154 User Manual Figure 6-6. Isolated S Series Device Digital I/O Signal Connections Caution Exceeding the maximum input v oltage ra tings, which are listed in the NI 6154 Specifications , can damage the D A Q device and the computer .
© National Instruments Corporatio n 7-1 NI 6124/6154 User Manual 7 Counters S Series devices have two general- purpose 32-bit counter/timers and one frequency generator, as shown in Figure 7-1. The general-purpose counter/timers can be used for many measurement and pulse generation applications.
Chapter 7 Counters NI 6124/6154 User Manual 7-2 ni.com The counters have se ven input signals, although in most applications only a fe w inputs are used. For information about connecting counter signals, refer to the Default Counter/Timer Pinouts section.
Chapter 7 Counters © National Instruments Corporatio n 7-3 NI 6124/6154 User Manual Figure 7-3. Single Point (On-Demand) Edge Counting with Pause T rigger Buffered (Sample Cl ock) Edge Counting With buffered edge counting (edge co unting using a sample clock), the counter counts the nu mber of edges on the Source input after the counter is armed.
Chapter 7 Counters NI 6124/6154 User Manual 7-4 ni.com Controlling the Direction of Counting In edge counting applications, the counter can count up or down .
Chapter 7 Counters © National Instruments Corporatio n 7-5 NI 6124/6154 User Manual Figure 7-5 sho ws an example of a single pulse-width measurement. Figure 7-5.
Chapter 7 Counters NI 6124/6154 User Manual 7-6 ni.com condition is not m et, consider using du plicate count prevention, described in the Duplicate Count Prevention section. For information about connecting counter signals, refer to the Default Counter/Timer Pinouts section.
Chapter 7 Counters © National Instruments Corporatio n 7-7 NI 6124/6154 User Manual Buffered Period Measurement Buffered period measurement is simila r to single period measurement, but buffered period measurement measures multiple periods.
Chapter 7 Counters NI 6124/6154 User Manual 7-8 ni.com Y ou can route an internal or externa l periodic clock sign al (with a kno wn period) to the Source input of the counter . The counter count s the number of rising (or falling) edges occurring on the Source input between two edges of the Gate signal.
Chapter 7 Counters © National Instruments Corporatio n 7-9 NI 6124/6154 User Manual For information about connecting counter signals, refer to the Default Counter/Timer Pinouts section. Frequency Measurement You can use the counters to measure frequency in several differen t ways.
Chapter 7 Counters NI 6124/6154 User Manual 7-10 ni.com Y ou can configure the counter to make K + 1 b uffered period measurements. Recall that the first period measurement in the buf fer should be discarded. A verage the remaining K period measurem ents to determ ine the av erage period of F1.
Chapter 7 Counters © National Instruments Corporation 7-11 NI 6124/6154 User Manual Figure 7-12 illu strates this m ethod. Another option would be to measure the width of a known period instead of a kno wn pulse.
Chapter 7 Counters NI 6124/6154 User Manual 7-12 ni.com Y ou can route the signal to measur e to the Source input of Counter 0, as shown in Figure 7-13. As sume this signal to measure has frequency F1. Configure Counter 0 to generat e a single pulse that is th e width of N periods of the source input signal.
Chapter 7 Counters © National Instruments Corporation 7-13 NI 6124/6154 User Manual • Method 1 uses only one counter . It is a good method for many applications. Ho wev er , the accurac y of the measurement decreases as the frequency increases. Consider a frequency measurement on a 50 kHz signal using an 80 MHz T imebase.
Chapter 7 Counters NI 6124/6154 User Manual 7-14 ni.com T able 7-2 summarizes some of the di f ferences in methods of measuring frequency . For information about connecting counter signals, refer to the Default Counter/Timer Pinouts section.
Chapter 7 Counters © National Instruments Corporation 7-15 NI 6124/6154 User Manual Figure 7-14 shows a quadrature cycle and the resulting increments and decrements for X1 encoding. When channel A leads channel B, the increment occurs on the rising e dge of channel A.
Chapter 7 Counters NI 6124/6154 User Manual 7-16 ni.com Channel Z behavior—when it goes high and how long it stays high—differs with quadrature encoder designs. Y ou must refer to the documentation for your quadrature encoder to obtain timing of channe l Z with respect to channels A and B.
Chapter 7 Counters © National Instruments Corporation 7-17 NI 6124/6154 User Manual For information about connecting counter signals, refer to the Default Counter/Timer Pinouts section.
Chapter 7 Counters NI 6124/6154 User Manual 7-18 ni.com Y ou can configure the rising or f alling edge of the Aux input to be the acti ve edge. Y ou can configure the rising or falling edge of the Gate input to be the acti ve edge. Use this type of measurement to c ount ev ents or measure the time that occurs between edges on two signal s.
Chapter 7 Counters © National Instruments Corporation 7-19 NI 6124/6154 User Manual Figure 7-21 shows an example of a bu f fered two-signal edge-separation measurement. Figure 7-21. Buffered T wo-Signal Edge-Separation Measurement For information about connecting counter signals, refer to the Default Counter/Timer Pinouts section.
Chapter 7 Counters NI 6124/6154 User Manual 7-20 ni.com Figure 7-22 shows a generation of a pulse with a pulse del ay of four and a pulse width of three (using the rising edge of Source).
Chapter 7 Counters © National Instruments Corporation 7-21 NI 6124/6154 User Manual Y ou can route the Start T rigger signal to the Gate input of the counter . Y ou can specify a delay from the Start T rig ger to the beginni ng of each pulse. Y ou also can specify the pulse widt h.
Chapter 7 Counters NI 6124/6154 User Manual 7-22 ni.com Y ou also can use the Gate input of the co unter as a Pause T rigger (if it is not used as a Start T rigger). The counte r pauses pulse generation when the Pause T rigger is active. Figure 7-25 shows a continuous pulse train generation (using th e rising edge of Source).
Chapter 7 Counters © National Instruments Corporation 7-23 NI 6124/6154 User Manual Frequency Generation You can generate a frequency by using a counter in pulse train generation mode or by using the frequency generator circui t. Using the Frequency Generator The frequency generator can output a square wave at many different frequencies.
Chapter 7 Counters NI 6124/6154 User Manual 7-24 ni.com Frequency Output can be routed out to any PFI <0..15> or R TSI <0..7> terminal. All PFI terminals are set to high-impedance at startup. The FREQ OUT signal also can be routed to DO Sample Clock and DI Sample Clock.
Chapter 7 Counters © National Instruments Corporation 7-25 NI 6124/6154 User Manual The wa veform thus produced at the coun ter’ s output can be used to provide timing for u ndersampling applicat ions where a digitizing system can sample repetitive wa veforms that are higher in frequency than the Ny quist frequency of the system.
Chapter 7 Counters NI 6124/6154 User Manual 7-26 ni.com Counter n Source Signal The selected edge of the Counter n Source signal increments and decrements the counter value dependi ng on the application the counter is performing. Table 7-3 lists how th is terminal is used in var ious applications.
Chapter 7 Counters © National Instruments Corporation 7-27 NI 6124/6154 User Manual Routing Counter n Source to an Output T erminal You can route Counter n Source out to any PFI <0..15> or RTSI <0..7> terminal. All PFIs are set to high-impedance at startup.
Chapter 7 Counters NI 6124/6154 User Manual 7-28 ni.com Counter n Aux Signal The Counter n Aux signal indicates the fi rst edge in a tw o-signal edge-separation measurement. Routing a Signal to Counter n Aux Each counter has independent input selectors for the Counter n Au x signal.
Chapter 7 Counters © National Instruments Corporation 7-29 NI 6124/6154 User Manual Counter n Up_Down Signal Counter n Up_Down is another name for the Counter n B signal. Counter n HW Arm Signal The Counter n HW Arm signal enab les a counter to begin an inpu t or output function.
Chapter 7 Counters NI 6124/6154 User Manual 7-30 ni.com W ith pulse or pulse train generation ta sks, the counter driv es the pulse(s) on the Counter n Internal Output signal. The Counter n Internal Output signal can be internally routed to be a coun ter/tim er input or an “external” source for AI, A O, DI, or DO timing signals.
Chapter 7 Counters © National Instruments Corporation 7-31 NI 6124/6154 User Manual Counter T riggering Counters support three different triggering actions: • Arm Start Trigger —T o begin any counter input or output function, you must first enable, or arm, the counter .
Chapter 7 Counters NI 6124/6154 User Manual 7-32 ni.com Other Counter Features Cascading Counters You can internally route the Coun ter n Internal Output and Counter n TC signals of each counter to the Gate inpu ts of the other counter. By cascading two counters together, you can effectively create a 64-bit counter.
Chapter 7 Counters © National Instruments Corporation 7-33 NI 6124/6154 User Manual The filter setting for each input can be conf igured independently . On power up, the filters are dis abled. Figure 7- 30 shows an e xample of a lo w to high transition on an input that has its filter set to 125 ns (N = 5).
Chapter 7 Counters NI 6124/6154 User Manual 7-34 ni.com Figure 7-31. Pres caling Prescaling is intended to be used for frequency measurement where the measurement is made on a continu ous, repetiti ve signal. The prescaling counter cannot be read; therefore, you cannot determ ine how man y edges hav e occurred since the pre v ious rollov er .
Chapter 7 Counters © National Instruments Corporation 7-35 NI 6124/6154 User Manual Example Application That Works Correctl y (No Duplicate Counting) Figure 7-32 shows an external buffered signal as the peri od measurement Source.
Chapter 7 Counters NI 6124/6154 User Manual 7-36 ni.com Example Application Tha t W orks Incorrectly (Duplicate Counting) In Figure 7- 33, after the fir st rising e dge of Gate, no Source pulses occur, so the counter does not write th e correct data to the buffer.
Chapter 7 Counters © National Instruments Corporation 7-37 NI 6124/6154 User Manual Even if the Source pulses are long, the counter increments only once for each Source pulse. Normally , the coun ter value and Counter n Internal Output signals change synchronously to the Source signal.
Chapter 7 Counters NI 6124/6154 User Manual 7-38 ni.com In D A Qmx, the device uses 80 MHz source m ode if you perform the following: • Perform a po si tion measurement • Select duplicate count pre vention Otherwise, the mode depends on the signal that drives Counter n Source.
Chapter 7 Counters © National Instruments Corporation 7-39 NI 6124/6154 User Manual Other Internal Source Mode In other internal source mode, the device synchronizes signals on the falling edge of the source, and counts on the fol lowing rising edge of the source, as shown in Figure 7-36.
© National Instruments Corporatio n 8-1 NI 6124/6154 User Manual 8 Programmable Function Interfaces (PFI) Refer to one of the following sections, depending on your device: • PFI for Non-Isolated Devices —NI 6124 devices have 16 PFI pins i n addition to eight lines of bidi rectional DIO signals.
Chapter 8 Programmable Fu nction Inte rfaces (PFI) NI 6124/6154 User Manual 8-2 ni.com Each PFI input also has a programmable debouncing filter . Figure 8-1 shows the circuitry of one PFI line.
Chapter 8 Programmable F unction Interfaces (PFI) © National Instruments Corporatio n 8-3 NI 6124/6154 User Manual Figure 8-2 shows the circuitry o f one PFI input l ine. Each PFI line is similar . Figure 8-2. PFI Inp ut Circuit ry on Isolated S Series Devices Each PFI <6.
Chapter 8 Programmable Fu nction Inte rfaces (PFI) NI 6124/6154 User Manual 8-4 ni.com Using PFI T erminals as Timing Input Signals Use PFI terminals to route external timing signals to many different S Series functions.
Chapter 8 Programmable F unction Interfaces (PFI) © National Instruments Corporatio n 8-5 NI 6124/6154 User Manual • A O Start Trigge r (ao/StartT rigger) • Counter n Source • Counter n Gate • Counter n Internal Output •F r e q u e n c y O u t p u t •P X I _ S T A R •R T S I < 0 .
Chapter 8 Programmable Fu nction Inte rfaces (PFI) NI 6124/6154 User Manual 8-6 ni.com Connecting PFI Input Signals All PFI input connections are referenced to D G ND. Figure 8-4 shows this reference, and how to connect an ex ternal PFI 0 source and an external PFI 2 source to two PFI terminals.
Chapter 8 Programmable F unction Interfaces (PFI) © National Instruments Corporatio n 8-7 NI 6124/6154 User Manual Assume that an input terminal has been low for a long time. The input terminal then changes from low to high, but glitches se veral times.
Chapter 8 Programmable Fu nction Inte rfaces (PFI) NI 6124/6154 User Manual 8-8 ni.com I/O Protection Each DIO and PFI signal is protected against overvoltage, und ervoltage, and overcurrent conditions as well as ESD events.
Chapter 8 Programmable F unction Interfaces (PFI) © National Instruments Corporatio n 8-9 NI 6124/6154 User Manual • NI 6154 Devices —By default, the digital outp ut lines (P1.<0..3>/PFI <6..9>) are disabled (high impedance) at power up.
© National Instruments Corporatio n 9-1 NI 6124/6154 User Manual 9 Digital Routing and Clock Generation The digital routing circuitry has the follow ing main functions: • Manages the flo w of data be tween the b us interface and the acquisition/generat ion sub-systems (analog inpu t, analog output, digital I/O, and the counters).
Chapter 9 Digital Routin g and Clock Generation NI 6124/6154 User Manual 9-2 ni.com 80 MHz Timebase The 80 MHz Timebase can be used as the Source input to the 32-bit general-purpose counter/timers.
Chapter 9 Digit al Routing a nd Clock Gene ration © National Instruments Corporatio n 9-3 NI 6124/6154 User Manual 10 MHz Reference Clock The 10 MHz reference clock can be used to synchronize other devi ces to your S Series device. The 10 MHz refere nce clock can be routed to the RTSI <0.
Chapter 9 Digital Routin g and Clock Generation NI 6124/6154 User Manual 9-4 ni.com Real-T ime System Integration (R TSI) Real-Time System Integration (RTSI) is a set of bused signals among devices th.
Chapter 9 Digit al Routing a nd Clock Gene ration © National Instruments Corporatio n 9-5 NI 6124/6154 User Manual Figure 9-2. S Series PCI Device RTSI Pinout Using R TSI as Outputs RTSI <0.
Chapter 9 Digital Routin g and Clock Generation NI 6124/6154 User Manual 9-6 ni.com • Counter n Source, Gate, Z, Internal Output • Change Detection Event • Analog Comparison Event • FRE Q OUT • PFI <0..5> Note Signals with a * are in verted before being dri ven on the R TSI terminals.
Chapter 9 Digit al Routing a nd Clock Gene ration © National Instruments Corporatio n 9-7 NI 6124/6154 User Manual The following is an e xample of lo w to high transitions of the input signal. High to lo w transitions wor k similarly . Assume that an input terminal has been low for a long time.
Chapter 9 Digital Routin g and Clock Generation NI 6124/6154 User Manual 9-8 ni.com Refer to the Kno wledgeBase document, Digital Filtering with M Series and CompactDAQ , for more information about di gital filters and counters. T o access this Kno wledgeBase, go to ni.
Chapter 9 Digit al Routing a nd Clock Gene ration © National Instruments Corporatio n 9-9 NI 6124/6154 User Manual An S Series de vice recei ves the Star T rigger signal (PXI_ST AR) from a Star T rigger controller . PXI_ST AR can be used as an ex ternal source for many AI, A O, and counter signals.
Chapter 9 Digital Routin g and Clock Generation NI 6124/6154 User Manual 9-10 ni.com The filter setting for each input can be conf igured independently . On power up, the filters are dis abled. Figure 9-4 sho ws an example of a low to high transition on an input that has its filter set to 125 ns (N = 5).
© National Instruments Corporation 10-1 NI 6124/6154 User Manual 10 Bus Interface Each S Series device is designed on a complete hardware architecture that is deployed on the following platfo rms: .
Chapter 10 Bus Interface NI 6124/615 4 User Manu al 10- 2 ni.com Data T ransfer Methods There are three primary ways to tran sfer data across the PCI bus are as follows: • Direct Memory Access (DMA) —DMA is a method to tran sfer data between the de vice and computer me mory without the in volv ement of the CPU.
© National Instruments Corporation 11-1 NI 6124/6154 User Manual 11 T riggering A trigger is a signal that causes a de vice to perform an action, such as starting an acquisition.
Chapter 11 T riggering NI 6124/615 4 User Manu al 11- 2 ni.com Figure 11-1 shows a falling-edge trigger . Figure 11-1. Falling-Edge T rigger Y ou can also prog ram your D A Q device to perform an action in response to a trigger from a digital source.
Chapter 11 T riggering © National Instruments Corporation 11-3 NI 6124/6154 User Manual Analog Input Channel (NI 6124 Only) You can select any analog input channel to drive the instrumentation am plifier. The inst rumentation ampl ifier amplif ies the signal as determined by the input mode and the input pol arity and range.
Chapter 11 T riggering NI 6124/615 4 User Manu al 11- 4 ni.com In below-le vel analog triggering mode, shown in Figure 11-3, the trigger is generated when the signal value is less than Le vel.
Chapter 11 T riggering © National Instruments Corporation 11-5 NI 6124/6154 User Manual For the tr igger to assert, the signa l must firs t be belo w the low threshold, then go above the high threshold. The trigger stay s asserted until the signal returns below the low threshold.
Chapter 11 T riggering NI 6124/615 4 User Manu al 11- 6 ni.com • Analog Window Triggering —An analog window trigger occurs when an analog signal e ither passes int o (enters) or passes out of (leav es) a window def ined by two v oltage lev els. Specify the levels b y setting the window T op value and the window Bottom v alue.
© National Instruments Corporation A-1 NI 6124/6154 User Manual A Device-Specific Information This appendix includes device-specif ic information about the following S Series devices : • NI 6124 • NI 6154 NI 6124 The NI 6124 is a Plug-and-Play , multifunction analog, digital , and timing I/O device for PXI Expr ess bus computers .
Appendix A Device-Speci fic Information NI 6124/6154 User Manual A-2 ni.com Note The A O channels do not have analog or digital filtering hardware and do produce images in the frequency domain related to the update rate. NI 6124 I/O Connector Pinout Figure A-1 shows the pin assignments for the 68-pin connector on the NI 6124.
Appendix A Device-Specific Information © National Instruments Corporation A-3 NI 6124/6154 User Manual Note For more informatio n about default NI-DA Qmx counter inputs, r efer to Conn ecting Counter Signals in the NI-DAQmx H elp or the LabVIEW Help in version 8.
Appendix A Device-Speci fic Information NI 6124/6154 User Manual A-4 ni.com NI 6124 Block Diagram Figure A-2 shows the NI 6124 block diagram. Figure A-2. NI 6124 Block Diagram NI 6124 Cables and Accessories This section describes some of the cable and access ory options for the NI 6124.
Appendix A Device-Specific Information © National Instruments Corporation A-5 NI 6124/6154 User Manual Using BNCs Y ou can connect BNC cables to your D A Q device using BNC accessories such as the BNC-2110 , BNC-2120, and B NC-2090A.
Appendix A Device-Speci fic Information NI 6124/6154 User Manual A-6 ni.com Mating connectors and a backshell kit for making custom 68-pin cables are av ailable from NI. NI recommends that you use one of the following connectors with the I/O connector on your device.
Appendix A Device-Specific Information © National Instruments Corporation A-7 NI 6124/6154 User Manual NI 6154 The NI 6154 is an isolated Plug-and-Pl ay multifunction anal og, digital, and timing I/O device for PCI b us computers.
Appendix A Device-Speci fic Information NI 6124/6154 User Manual A-8 ni.com NI 6154 I/O Connector Pinout Figure A-3 shows the pin assignments for the 37-pin I/O connect or on the NI 6154.
Appendix A Device-Specific Information © National Instruments Corporation A-9 NI 6124/6154 User Manual Note For more informatio n about default NI-DA Qmx counter inputs, r efer to Conn ecting Counter Signals in the NI-DAQmx H elp or the LabVIEW Help in version 8.
Appendix A Device-Speci fic Information NI 6124/6154 User Manual A-10 ni.com NI 6154 Block Diagram Figure A-4 shows the NI 6154 block diagram. Figure A-4. NI 6154 Block Diagram NI 6154 Cables and Accessories This section describes some of the cable and access ory options for the NI 6154.
Appendix A Device-Specific Information © National Instruments Corporation A-11 N I 6124/6154 User Manual • CB-37FH —37-pin screw terminal block, horizontal, DIN rail mount • CB-37FV —37-pin s.
Appendix A Device-Speci fic Information NI 6124/6154 User Manual A-12 ni.com The non-isolated ground is connected to the chassis groun d of the PC or chassis where the device is installed. The isolated ground is not connected t o the chassis ground of the PC or chassis.
Appendix A Device-Specific Information © National Instruments Corporation A-13 N I 6124/6154 User Manual • Improved accuracy —Isolation improv es m easurement accurac y by physically prev enting ground loops.
© National Instruments Corporation B-1 NI 6124/6154 User Manual B T echnical Support and Professional Ser vices Visit the following sections of the award-winning National Instruments Web site at ni.com for technical support and professional services: • Support —T echnical support at ni.
Appendix B T echnical Support and Professional Services NI 6124/6154 User Manual B-2 ni.com • Declaration of Conformit y (DoC) —A DoC is our claim of compliance with the C ouncil of the European Communities usin g the manufacturer’ s declaration of conformity .
© National Instruments Corporation G-1 NI 6124/6154 User Manual Glossar y Symbol Pref ix V alue pp i c o 1 0 –12 nn a n o 1 0 –9 μ micro 10 –6 m milli 10 –3 k kilo 10 3 Mm e g a 1 0 6 Symbols ° Degree. > Greater than. < Less than. – Neg ati ve of, or minus.
Glossary NI 6124/6154 User Manual G-2 ni.co m ADC Analog-to-digital con verter—an elect ronic de vice, often an integrated circuit, that con verts an an alog voltage to a digital number . ADE Application Dev elopment Enviro nment—a softwa re en vironment incorporating the development, debug, and analysis tools for software dev elopment.
Glossary © National Instruments Corporation G-3 NI 6124/6154 User Manual channel 1. Physical—a terminal or pin at which you can measure or generat e an analog or digital signal. A single physical channel can incl ude more than one terminal, as in the case of a dif feren tial analog input channel or a digital port of eight lines.
Glossary NI 6124/6154 User Manual G-4 ni.co m D D/A Digital-to-analog. D A C Digital-to-anal og con verter—an elec tronic device, often an integrated circuit, that con verts a digital number into a correspond ing analog voltage or current. DAQ See data acquisition (DAQ) .
Glossary © National Instruments Corporation G-5 NI 6124/6154 User Manual DIP Dual inline package. DMA Direct memory access—a method by wh ich data can be transferred to/from computer memory from/ to a device or memory on the b us while the processor does something else.
Glossary NI 6124/6154 User Manual G-6 ni.co m FPGA Field-programmable gate array . G gain The factor by which a si gnal is amplified, often expressed in dB. Gain as a function of frequency is commonly referred to as the magnitude of the frequency response function.
Glossary © National Instruments Corporation G-7 NI 6124/6154 User Manual M m Meter . master A functio nal part of a MXI/VME/VXIb us device that initiat es data transfers on the backplane. A transfer can be either a read or a write. module A board assembly an d its associated mechanical pa rts, front panel, optional shields, and so on.
Glossary NI 6124/6154 User Manual G-8 ni.co m pd Pull-down. PFI Programmable function interface. PGIA Program mable gain instrum entation ampl ifier . physical channel See channel . port 1. A communications connection on a computer or a remote cont roller .
Glossary © National Instruments Corporation G-9 NI 6124/6154 User Manual S s Seconds. S Samples. S/s Sampl es per second—used to express the rate at which a digitizer or D/A con v erter or D A Q device sa mples an analog signal.
Glossary NI 6124/6154 User Manual G-10 ni.com t gw Gate pulse width. THD T otal harmonic distortion—the ratio of the total rms signal due to harmo nic distortion to the overall rms signal, in dB or percent.
Glossary © National Instruments Corporation G-11 NI 6124/6154 User Manual V IL V olts, input low . V in V olts in. V m Measured voltage. V OH V olts, output high. V OL V olts, output low . V OUT V olts out. V rms V olts, roo t mean square. V s Ground-referenced signal source.
© National Instruments Corporatio n I-1 NI 6124/6154 User Manual Index Numerics 10 MHz reference clock, 9-3 100 kHz Timebase, 9-2 20 MHz Timebase, 9-2 80 MHz source mode, 7-38 80 MHz Timebase, 9-2 A .
Index NI 6124/6154 User Manual I-2 ni.com applications counter input, 7-2 counter output, 7-19 edge counting, 7-2 arm start trigg er, 7-31 B block diagram NI 6124, A-4 NI 6154, A-10 PFI input circuitr.
Index © National Instruments Corporatio n I-3 NI 6124/6154 User Manual Counter n Source signal, 7-26 Counter n TC signal, 7-29 Counter n Up_Down signal, 7-29 Counter n Z signal, 7-28 counter signals .
Index NI 6124/6154 User Manual I-4 ni.com triggering, 11-1 waveform acquisition, 6-3 waveform generation, 6-5 digital I/O, 6-1 block diagram, 6-2 circuitry, 6-2 connecting signals, 6-9 DI change detec.
Index © National Instruments Corporatio n I-5 NI 6124/6154 User Manual finite pulse train timing generati on, 7-22 FREQ OUT signal, 7-30 frequency division, 7-24 generation, 7-23 generator, 7-23 meas.
Index NI 6124/6154 User Manual I-6 ni.com single pulse-width, 7-4 single semi-period, 7-8 single two-signal edge-separation, 7 -18 two-signal edge-separation, 7-17 using quadrature encoders, 7-14 usin.
Index © National Instruments Corporatio n I-7 NI 6124/6154 User Manual power-up states, 6-7, 8-8, 8-9 prescaling, 7-33 programmable function interface (PFI), 8-1 power-up states, 6-7, 8-8 programmabl.
Index NI 6124/6154 User Manual I-8 ni.com signals AI Convert Clock, 4-16 AI Convert Clock Timebase, 4-17 AI Reference Trigger, 4-19 AI Sample Clock, 4-14 AI Sample Clock Timebase, 4-16 AI Start Trigg .
Index © National Instruments Corporatio n I-9 NI 6124/6154 User Manual training and certificatio n (NI resources), B-1 transducers, 2-5 trigger arm start, 7-31 pause, 7-31 PXI, 9-8 PXI_STAR, 9-8 Star.
Un punto importante, dopo l’acquisto del dispositivo (o anche prima di acquisto) è quello di leggere il manuale. Dobbiamo farlo per diversi motivi semplici:
Se non hai ancora comprato il National Instruments Network Device DAQ S è un buon momento per familiarizzare con i dati di base del prodotto. Prime consultare le pagine iniziali del manuale d’uso, che si trova al di sopra. Dovresti trovare lì i dati tecnici più importanti del National Instruments Network Device DAQ S - in questo modo è possibile verificare se l’apparecchio soddisfa le tue esigenze. Esplorando le pagine segenti del manuali d’uso National Instruments Network Device DAQ S imparerai tutte le caratteristiche del prodotto e le informazioni sul suo funzionamento. Le informazioni sul National Instruments Network Device DAQ S ti aiuteranno sicuramente a prendere una decisione relativa all’acquisto.
In una situazione in cui hai già il National Instruments Network Device DAQ S, ma non hai ancora letto il manuale d’uso, dovresti farlo per le ragioni sopra descritte. Saprai quindi se hai correttamente usato le funzioni disponibili, e se hai commesso errori che possono ridurre la durata di vita del National Instruments Network Device DAQ S.
Tuttavia, uno dei ruoli più importanti per l’utente svolti dal manuale d’uso è quello di aiutare a risolvere i problemi con il National Instruments Network Device DAQ S. Quasi sempre, ci troverai Troubleshooting, cioè i guasti più frequenti e malfunzionamenti del dispositivo National Instruments Network Device DAQ S insieme con le istruzioni su come risolverli. Anche se non si riesci a risolvere il problema, il manuale d’uso ti mostrerà il percorso di ulteriori procedimenti – il contatto con il centro servizio clienti o il servizio più vicino.