Manuale d’uso / di manutenzione del prodotto MT2834MR6 del fabbricante Multitech
Vai alla pagina of 123
MultiModem MT2834MR6 User Guide.
MultiModem MT2834MR6 User Guide PN: S000326A Copyright ©2003 by Multi-Tech Systems, Inc. All rights reserved. This publication may not be reproduced, in whole or in part, without prior written permission from Multi- Tech Systems, Inc. Multi-Tech Systems, Inc.
Contents Chapter 1 - Introduction ..................................................................................... 7 1. 1 Introduction ............................................................................................. 8 1. 2 Manual Organization .
3.13 Escape Sequences .............................................................................. 52 3.14 Remote Configuration Commands ....................................................... 53 3.15 Line Probe Commands ............................
5.10.6 Pacing (Computer-Initiated Flow Control) ............................................ 7 4 5.10.7 Data Compression .............................................................................. 7 4 5. 1 1 Result Codes ...........................
Appendix B .................................................................................................... 92 Dial Pulses ...................................................................................................... 9 2 Tone Dial Frequencies .
Chapter 1 - Introduction.
8 Chapter 1 - Introduction 1 . 1 Introduction Welcome to the world of data communications. You have acquired one of the finest rack-mount intelligent modems available, the MT2834MR6, from Multi-Tech Systems. This owner’s manual will help you install, configure, test, and use your modem.
9 Chapter 1 - Introduction 1 . 3 Description Each MT2834MR6 card contains six integrated 33,600 bps MultiModems. Each modem on the MT2834MR6 card can be configured independently of the others via the MultiModemManager controller card (Model MR4800 or MR4800E), which can support and control up to 16 MultiModem cards per rack.
10 Chapter 1 - Introduction 1 . 4 FCC Regulations f or T elephone Line Interconnection 1. No repairs are to be made by you. Repairs are to be made only by Multi-Tech Systems or its licensees. Unauthorized repairs void registration and warranty. Contact Multi-Tech Systems, Inc.
11 Chapter 1 - Introduction 1 . 5 Canadian Limitations Notice Notice: The ringer equivalence number (REN) assigned to each terminal device provides an indication of the maximum number of terminals allowed to be connected to a telephone interface.
12 Chapter 1 - Introduction 1 . 6 T echnical Specifications Model Number MT2834MR6 Data Rates (Modem) Six independent modems (Modem A, B, C, D, E, F), each operating at 33,600, 31,200, 28,800, 26,400,.
13 Chapter 1 - Introduction Carrier Frequencies: Transmit originate: 1270 Hz mark Bell 103/113 1070 Hz space (300 bps) Receive originate: 2225 Hz mark 2025 Hz space Transmit answer: 2225 Hz mark 2025 Hz space Receive answer: 1270 Hz mark 1070 Hz space Carrier Frequencies: Transmit originate: 980 Hz mark V.
14 Chapter 1 - Introduction Firmware Upgrades Via flash PROM technology on Multi-Tech’s BBS Indicators LEDs for Transmit Data, Receive Data, Carrier Detect, Speed, and Off Hook/Out- Of-Service Contr.
15 Chapter 1 - Introduction 1 . 8 Modem LED Indicators The MT2834MR6 has five LED indicators per modem: TD Transmit Data. This LED blinks when data is being transmitted, on for a space, off for a mark. The state of this LED matches that of the TD circuit on Pin 2 of the RS-232C interface.
16 Chapter 1 - Introduction 1.10 MT2834MR6 Installation Notes All installation must be done by a qualified service person. The installation instructions in your MultiModemManager Owner’s Manual include information about the use of blanking plates to cover empty slots in the card frame.
Chapter 2 - Dialing and Answering.
18 Chapter 2 - Dialing and Answering 2 . 1 Introduction This chapter describes the dialing and answering capabilities of the MT2834MR6 modems, which are standard ITU-T V.34 full duplex dial-up modems. 2 . 2 Dial-Up A utomatic Answering The MT2834MR6 can answer calls automatically.
19 Chapter 2 - Dialing and Answering 2 . 4 Call T ermination There are several methods by which you can terminate a call, or simply stated, hang up: 1. Command Mode Control. It is possible to enter command mode while remaining online by entering an escape sequence ( +++AT<CR> in most cases).
Chapter 3 - A T Commands.
21 Chapter 3 - AT Commands 3 . 1 W orking with A T Commands The MT2834MR6’s modems are controlled by instructions called AT commands, so called because the attention characters AT precede each command or command string (sequence of commands).
22 Chapter 3 - AT Commands 3.2.2 Command Structure You can control a wide variety of modem operations and options when the modem is in command mode. AT commands tell the modem to dial a number, to answer a call, to operate at a certain speed, to use a certain compression technique, and many other functions.
23 Chapter 3 - AT Commands Table 3-1. AT Commands by Function Topic: Command: Description: Dialing Action D Dial A: Continuous redial H On-hook/off-hook Dial Modifiers P Pulse dialing T Tone dialing W.
24 Chapter 3 - AT Commands Table 3-1. AT Commands by Function (con't) Topic: Command: Description: V.34 Controls %F Echo canceler frequency offset comp.
25 Chapter 3 - AT Commands Table 3-1. AT Commands by Function (con't) Topic: Command: Description: &E10 Non-error correction mode flow control off &E11 Non-error correction mode flow cont.
26 Chapter 3 - AT Commands 3 . 2 Dialing Commands Dialing commands are used to dial and to hang up. D s Dial s = phone number Default: none The letter D in a command causes the modem to dial the telephone number immediately following it. For example, if you type ATD5551212<CR> , the modem dials the number 555- 1212.
27 Chapter 3 - AT Commands 3 . 3 Dial Modifier Commands The dial string can include the digits 0 through 9, the pound sign (# ), the asterisk (* ), and the letters A, B, C, or D. The latter are used by some PBXs; the exact function will depend on the PBX manufacturer’s feature set and implementation.
28 Chapter 3 - AT Commands , Dialing Pause Enter a comma in the dialing string to make the modem pause while dialing. This pause lasts two seconds (North American models) or four seconds (U.
29 Chapter 3 - AT Commands $ Call Card Tone Detect Use the $ command to dial services that require you to enter your call card number after a tone. A $ character in the dialing string causes the modem to pause and wait for an AT&T call card “bong” or a 1600 Hz tone (prevalent in the U.
30 Chapter 3 - AT Commands 3 . 4 Phone Number Memory Commands The modem can store up to two telephone numbers in nonvolatile memory. You can store the numbers with the DsNd command, dial them with the Nd command, link them so that one will be automatically dialed after the other with the NdNe command, or list them with the L command.
31 Chapter 3 - AT Commands L List Stored Telephone Numbers Use the L command to display dialing commands stored in the modem’s nonvolatile memory. Typing ATL<CR> displays the stored N numbers in the following format: 0 T14082345678 1 P9,T14089876543 All digits and command letters are displayed.
32 Chapter 3 - AT Commands 3 . 5 Configuration Storage and Recall Commands The MT2834MR6 stores parameters in two places. It stores factory default parameters in read-only memory (ROM), and customized parameters in nonvolatile random access memory (NVRAM).
33 Chapter 3 - AT Commands Table 3-2. Where the Modem Reads Configuration Parameters Power-On Previous Command AT&F and ATZ AT&W1 (default) ROM ROM AT&W0 RO M NVRAM AT&F8&W0 RO M NVRAM AT&F9&W0 NVRAM NVRAM Z Reset Modem The Z command resets the modem to its default configuration and clears the command buffer.
34 Chapter 3 - AT Commands 3 . 6 Modem Response (Result Code) Commands The MT2834MR6’s modems can give responses to commands. The most common one is OK, but the modems also can alert you or your software to dial tones, busy signals, connection speeds, and whether the connection is made with error correction or compression enabled.
35 Chapter 1 - Introduction V n Result Codes (Verbose/Terse) n = 0 or 1 Default: V1 The V command controls whether the modem’s result codes display as verbal (“verbose”) or digital (“terse”) messages. For example, if no carrier signal is detected after dialing, the result can be displayed either as NO CARRIER, or as the digit 3.
36 Chapter 3 - AT Commands 3 . 7 Online Connection Commands The following commands control the conditions of the online connection. #An Auto Speed Detection n = 0–3 Default: #A0 An MT2834MR6 modem can operate as a 33,600 bps, 28,800 bps, 19,200 bps, 14,400 bps, 9600 bps, 4800 bps, 2400 bps, or 300 bps modem.
37 Chapter 3 - AT Commands &CDn Cleardown at Disconnect n = 0 or 1 Default: &CD0 In the V.32, V.32bis, and V.34 protocols, a cleardown is sent by one of the modems to signal the other modem that it is going to hang up.
38 Chapter 3 - AT Commands &G n Guard Tones n = 0, 1, or 2 Default: &G0 (models outside U.K.) &G2 (U.K. models only) The &G command is used to control the presence or absence of guard tones from the transmitter when in answer mode at either 1200 or 2400 bps.
39 Chapter 3 - AT Commands $T n Calling Tone n = 0 or 1 Default: $T1 The $T command enables or disables the modem’s calling tone, which is required by some European countries to identify the caller as a modem. $T0 enables the calling tone. $T1 disables the calling tone.
40 Chapter 3 - AT Commands 3 . 8 V .34 Commands The following commands apply only in V.34 mode. %F n Echo Canceler Frequency Offset Compensation n = 0 or 1 Default: %F0 The %F command enables and disables echo canceler frequency offset compensation which, when enabled, can decrease modem performance.
41 Chapter 3 - AT Commands 3 . 9 RS-232 Interface Commands These commands define how am MT2834MR6 modem will use and respond to standard RS-232 signals. &Cn Carrier Detect Control n = 0, 1, 2, or 4 Default: &C1 The &C command lets you control the Carrier Detect (CD) signal on the RS-232/V.
42 Chapter 3 - AT Commands &Sn Data Set Ready Control n = 0, 1, or 2 Default: &S1 Use the &S command to control the state of the Data Set Ready (DSR) signal on the RS- 232/V.
43 Chapter 3 - AT Commands 3.10 Error Correction and Data Compression Commands You can configure a modem to any of three different V.42 modes of operation (each mode can be with or without compression). They are the non-error correction, autoreliable, and reliable modes.
44 Chapter 3 - AT Commands $E n V.42 Error Correction at 300 bps n = 0 or 1 Default: $E0 At 300 bps, error correction is not normally used. $E0 disables 300 bps/V.42 error correction altogether. $E1 enables the modem to function at 300 bps in non-error correction ( &E0 ), autoreliable ( &E1 ), or reliable ( &E2 ) mode.
45 Chapter 3 - AT Commands 3.11 Speed Con version Commands Speed conversion allows the MT2834MR6 to communicate at a fixed speed through the serial port while communicating at an independent speed over the online communications link.
46 Chapter 3 - AT Commands $SBn Serial Port Baud Rate n = speed Default: $SB57600 The $SB command sets the speed of the MT2834MR6’s serial port in both originate and answer modes. Speed conversion allows you to set this serial port baud rate at a fixed speed of up to 115,200 bps, regardless of the modem’s transmission speed setting.
47 Chapter 3 - AT Commands 3.12 Immediate Action Commands Use these commands to get information about AT commands and the current settings of the modem. For additional immediate action commands, see “Line Probe Commands.” A/ Repeat Last Command Default: None Type A/ to repeat the previous command.
48 Chapter 3 - AT Commands & R N Rate Renegotiation Default: none The &RN command forces the modem to perform a rate renegotiation while online.
49 Chapter 3 - AT Commands 3.12 Flow Control Commands Flow control refers to the techniques used by data terminal equipment and the modem to pause and resume the flow of information between them. It prevents a device from accepting more data than it can handle.
50 Chapter 3 - AT Commands &E 5 XON/XOFF Flow Control XON/XOFF flow control is an in-band method of data flow regulation used by the modem or computer (i.
51 Chapter 3 - AT Commands &En Pacing (Computer-Initiated Flow Control) n = 12 or 13 Default: &E13 Pacing is the means by which the DTE (data terminal equipment—your computer or terminal) regulates the stream of incoming data. It is only enabled when the modem has some form of flow control active, such as RTS/CTS or XON/XOFF.
52 Chapter 3 - AT Commands 3.13 Escape Sequences Escape sequences (escape codes) cause the modem to enter command mode from online mode without disconnecting the call.
53 Chapter 3 - AT Commands 3.14 Remote Configuration Commands When you are online with another Multi-Tech modem, you can issue AT commands to it by sending a remote configuration escape sequence. The remote modem responds by displaying a menu and asking for a setup password.
54 Chapter 3 - AT Commands 3.15 Line Probe Commands Before V.34 negotiation, the local and remote modems use modulated calling and answering tones to exchange capability information . If V.34 mode communication is successful, probing signals are exchanged to identify impairments in the telephone channel.
55 Chapter 3 - AT Commands 3.16 Diagnostic Commands The MT2834MR6 has two diagnostic commands and four diagnostic modes. The power-on self-test is activated every time power is applied. The U command selects a loopback test, while the &T command enables a modem to respond to a loopback test from another modem.
Chapter 4 - S-Registers.
57 Chapter 4 - S-Registers 4 . 1 Introduction This chapter describes the MT2834MR6’s S-registers , which are small regions of memory where modem configuration information is stored. Whereas AT commands tell a modem what to do, S-registers tell the modem how to do it.
58 Chapter 4 - S-Registers S3 Return Character Unit: Decimal Range: 0–127 Default: 13 (^M) S3 defines the carriage return character by its decimal ASCII code. The default setting is the ^M character (decimal 13), which is the code for the ENTER key on most keyboards.
59 Chapter 4 - S-Registers S7 Time for Carrier (Abort Timer) Unit: 1 second Range: 1–255 (U.S.A.) 1–45 (Canada and International) 1–55 (U.K.) Default: 45 (North America and International) 55 (U.K.) S7 determines the abort timer delay time, which is the amount of time your modem will wait for a carrier signal before it disconnects.
60 Chapter 4 - S-Registers S1 1 Tone Dialing Spacing and Duration Unit: 1 ms Range: 1–255 (U.S.A.) 80–255 (Canada, U.K., International) Default: 70 (U.S.A.) 80 (Canada, U.K., International) S11 sets the speed of tone dialing (spacing and tone duration times).
61 Chapter 4 - S-Registers S3 0 Inactivity Timer Unit: 1 minute Range: 0, 1–255 minutes Default: 0 (disabled) S30 can be used to cause the modem to disconnect if no data is transmitted or received for a specified time. S30 runs during both reliable and non-error correction connections.
62 Chapter 4 - S-Registers S4 3 Force V.34 Connect Speed Unit: N/A Range: 0, 33, 31, 28, 26, 24, 21, 19, 16, 14, 12, 96, or 48 Default: 0 (disabled) S43 forces the modem to attempt to connect at a fixed speed in V.34 mode. The two-digit value corresponds to the first two digits of the speed ( S43=21 sets the connect speed to 21.
63 Chapter 4 - S-Registers 4 . 3 Reading and Assigning S-Register V alues Use the S command to assign a value to an S-register and to read an S-register’s current value. To read an S-register value, in terminal mode, type S , the S-register number, and a question mark ( ? ), and press ENTER.
64 Chapter 4 - S-Registers 4 . 4 A T Commands Affecting S-Registers For maximum throughput, the MT2834MR6's default configuration is for originating a call to another 33,600 bps modem that supports error correction, data compression, and flow control.
Chapter 5 - Error Correction, Dat a Compression & Speed Conversion.
66 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5 . 1 Introduction The MT2834MR6 has intelligent features beyond those of the AT command set described in Chapter 3. This chapter describes high performance features and commands that provide error correction, data compression and speed conversion capabilities.
67 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5 . 2 Ho w V .42 Detects and Corrects Error s Some of the better known software-based error-correction protocols include Xmodem and Kermit (for asynchronous file transfer software), X.
68 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5 . 3 Data Compression The MT2834MR6 has both V.42bis and MNP class 5 data compression. ITU-T V.42bis is an international data compression standard that can provide data compression of up to four to one in certain types of data.
69 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5 . 5 V .42 Mode Select Command ( #L ) The V.42 Mode Select command ( #L ) selects which type of error correction your MT2834MR6 will use for transmissions. The V.42 standard implements both MNP Class 3 & 4 and LAP-M error correction protocols.
70 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5 . 6 Modes of Operation You can configure your MT2834MR6 in one of three different V.42 modes of operation, each with or without compression. They are the non-error correction, reliable, and autoreliable modes.
71 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5 . 7 Flow Control Flow control refers to the techniques used by computer devices to stop and restart the flow of data from each other. Flow control is necessary so that a device does not receive more data than it can handle.
72 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5 . 8 Modem-Initiated Flow Control When operating in V.42 reliable mode, the MT2834MR6 stores data in a buffer as it is received. During periods of error-caused retransmissions or compression slowdowns, this buffer may fill up.
73 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5 . 9 P acing ( &E13 ) As mentioned earlier, the MT2834MR6 can initiate flow control by issuing XON/XOFF commands or by toggling the CTS signal on the RS-232 interface.
74 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5.10 Compression, Error Correction, Flow Control, and P acing Commands The MT2834MR6 has several commands that control error correction, data compression, and flow control: 5.10.1 V.
75 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5.11 Result Codes When the MT2834MR6 connects with another modem with error-correction or data compression enabled, its CONNECT responses change to inform you of the type of connection.
76 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5.12.1 Baud Adjust ( $B A ) In typical operations, the MT2834MR6 will do one of two things regarding speed.
77 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5.12.3 Serial Port Baud Rate ($SB) The $SB command presets the speed of the MT2834MR6’s RS-232 serial port in both the originate and the answer modes.
78 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5.13 Related Commands 5.13.1 Autoreliable Buffering ($A) In autoreliable mode, the modem is given four seconds to establish a reliable connection. If it cannot establish a reliable connection in that time, the modem drops to non-error correction mode.
79 Chapter 5 - Error Correction, Data Compression, and Speed Conversion 5.13.4 Retransmit Count ($R) If errors are received during a reliable connection, the modem resends the block of data that contained errors. If another error occurs, the block is re-sent again.
Chapter 6 - T esting & T roubleshooting.
81 Chapter 6 - Testing and Troubleshooting 6 . 1 Introduction Each time you power up the MT2834MR6, it performs an automatic self-test to ensure proper operation. The MT2834MR6 also has three diagnostic tests: local analog loopback, digital loopback (remote/automatic), and digital loopback (local/manual).
82 Chapter 6 - Testing and Troubleshooting 6 . 2 Local Analog Loopbac k T est (V .54 Loop 3) In this test, data from your computer or terminal is sent to your modem’s transmitter, converted into analog form, looped back to the modem’s receiver, converted into digital form, and then sent to your monitor for verification.
83 Chapter 6 - Testing and Troubleshooting 6 . 3 Remote Digital Loopbac k T est (V .54 Loop 2) In this test, your modem must be online with another modem, such as another ZDX, that is set up to respond to a request for remote digital loopback. With the ZDX, this ability to respond is controlled by the &T command.
84 Chapter 6 - Testing and Troubleshooting 6 . 4 Local Digital Loopbac k T est (V .54 Loop 2) This test is identical to the remote digital loopback test with one exception. Instead of using your modem to signal a remote modem to place itself in digital loopback mode, your modem is placed in digital loopback mode while the remote modem is not.
Chapter 7 - W arranty & Service.
86 Chapter 7 - Warranty And Service 7 . 1 Multi-T ech Systems, Inc. W arranty & Repairs P olicies 7.1.1 Warranty Multi-Tech Systems, Inc., (hereafter “MTS”) warrants that its products will be .
87 Chapter 7 - Warranty And Service 7.1.3 International Customers (outside U.S.A. and Canada) Your original point of purchase reseller may offer the quickest and most economical repair option for your Multi-Tech product.
88 Chapter 7 - Warranty And Service 7.2 Repairs 7.2.1 Repair Procedures for U.S. and Canadian Customers In the event that service is required, products may be shipped, freight prepaid, to our Mounds View, Minnesota factory: Multi-Tech Systems, Inc.
89 Chapter 7 - Warranty And Service 7.2.3 Repair Procedures for International Distributors Procedures for International Distributors of Multi-Tech products are on the distributor web site: www.
Appendices.
91 Appendix Appendix A ASCII Conversion Chart CTRL CODE H EX DEC CODE HE X DEC CODE H EX DEC CODE HE X DEC @ N U L 00 0 S P 20 32 @ 40 64 ` 60 96 A S O H 01 1 ! 21 33 A 41 65 a 61 97 B S T X 02 2 &quo.
92 Appendix Appendix B Dial Pulses When you pulse dial, as when you make a call with a rotary dial telephone, your telephone or modem generates codes in the form of pulses that simulate the opening and closing of old-fashioned electric relays, or switches.
93 Appendix Tone Dial Frequencies The tone dialing method combines two frequencies for each of the twelve digits found on a touch-tone dial pad. This method is referred to as dual-tone multi-frequency (DTMF) dialing.
94 Appendix Appendix C Result Code Summary Multi-Tech Result Codes ( &Q0 ) Terse Verbose Definition 0O K Command was executed without error; ready for next command. 1 CONNECT Modem has detected carrier and gone online. 2 RING Modem has detected ring caused by incoming call.
95 Appendix LAP-M Reliable Mode. If the modem connects using LAP-M error correction, the word LAPM or letter L is added to the CONNECT responses as follows: 1 L CONNECT LAPM 5 L CONNECT 1200 LAPM 9 L .
96 Appendix Appendix D S-Register Summary Register Unit Range Default Description S0 1 ring 0, 1–255 1 Sets the number of rings until the modem answers. ATS0=0 disables auto answer completely. S1 1 ring 0–255 0 Counts the rings that have occurred.
97 Appendix S34 1 char- 0–60 10 Sets the number of command characters allowed after +++AT . acter S36 1 sec 0, 1-255 5 Sets the time between DTR inactive and modem off-hook. S36=0 disables DTR busy-out. S37 1 s ec 0-255 5 Sets the time between DTR active and modem on-hook.
98 Appendix Appendix E AT Command Summary Com ma nd Values Description AT n/a Attention Code The attention code precedes all command lines except A/ , A: and escape codes. RETURN n/a RETURN Key Press the RETURN (ENTER) key to execute most commands. A n/a Force Answer Mode Answer call immediately without waiting for ring.
99 Appendix &CDn n = 0 or 1 Cleardown at Disconnect * ** &CD0 Enable cleardown. &CD1 Disable cleardown. Ds s = phone # Dial Dial telephone number s , where s may include up to 60 digits or T, P, R, comma, colon, and semicolon characters.
100 Appendix &En n = 0–15 V.42 Error Correction Modes &E 0 Non-error correction mode (V.42 disabled). * ** &E 1 Auto-reliable mode. &E 2 Reliable mode (V.42 enabled). Modem-Initiated Flow Control &E 3 Flow control disabled. * ** &E 4 Hardware flow control.
101 Appendix #Fn n = 0, 1, or 2 Fallback Modes When Online #F 0 No fallback when online. #F 1 Fall back incrementally from maximum speed to 4800 bps. * ** #F 2 Fall back incrementally to 4800 bps, fall forward when line improves. &Gn n = 0, 1, or 2 Guard Tones (International model only) * ** &G 0 Turn off ITU-T guard tones.
102 Appendix $MBn n = speed Modem Baud Rate $MB75 Select ITU-T V.23 mode. $MB300 Select 300 bps on line. $MB1200 Select 1200 bps on line. $MB2400 Select 2400 bps on line. $MB4800 Select 4800 bps on line. $MB7200 Select 7200 bps on line. $MB9600 Select 9600 bps on line.
103 Appendix &RFn n = 0 or 1 CTS/RTS Interaction Control &RF0 Let CTS follow RTS. * * * &RF1 Let CTS act independently. &RN n/a Rate Renegotiation Forces the modem to renegotiate the data rate. &RP n/a Immediate Line Probe Initiates a retrain that makes the modem read line probe information if %DP1 is selected.
104 Appendix &Tn n = 4 or 5 Respond to Remote Digital Loopback Signal &T4 Enable response to remote digital loopback signal. * ** &T5 Disable response to remote digital loopback signal. $Tn n = 0 or 1 Calling Tone $T 0 Enable calling tone.
105 Appendix : At end of dial Continuous Redial command Colon; causes continuous redial of number until answered (10 in North American models). Not used in U.K. or International models. ; At end of dial Return to Command Mode After Dialing command Semi-colon; causes immediate return to command mode after dialing.
106 Appendix Appendix F RS-232C Interface Specifications The MT2834MR6’s serial interface circuits have been designed to meet the electrical specifications in EIA (Electronic Industries Association) Recommended Standard 232, Revision C (RS-232C).
107 Appendix Functional Description of the RS-232C Signals Transmitted Data (TD) — Pin 2 (To modem) Signals on this circuit are generated by the local computer and passed to the modem’s transmitter. A positive signal is a space (binary 0) and a negative signal is a mark (binary 1).
108 Appendix Test Voltage (+V) — Pin 9 (From modem) This test pin has 330 ohms of resistance to +12 volts DC. It can be used to strap other signals high. For example, if the terminal does not supply a DTR (Data Terminal Ready) signal, pin 9 can be jumpered to pin 20 (DTR) on the RS-232C connector or cable to force DTR on.
109 Appendix Ring Indicator (RI) — Pin 22 (From modem) This signal remains on for the duration of the ringing signal. When a ring signal is received by the modem, the modem automatically answers after the first ring.
110 Appendix Appendix G Cable and Connector Diagrams RS-232C Serial Cable 1 1 Frame Ground 1 2 2 Transmit Data 2 3 3 Receive Data 3 4 4 Request to Send 4 5 5 Clear to Send 5 6 6 Data Set Ready 6 7 7 S.
111 Appendix APPENDIX H Introduction to MultiTech Escape Methods You may sometimes find it necessary to issue AT commands to your modem, while you are online with a remote modem, without disconnecting the call.
112 Appendix How to Select an Escape Method If you want your modem to escape and then wait for you to issue a command before it will return to online mode, then use +++AT<CR>. For example, use this method if you find you need to review a help screen in the middle of a communications session.
113 Appendix S-Registers and Escape Sequence There are two S-registers to modify the functioning of escape sequences. Register S32 establishes a value for how much time may elapse between the receipt of the beginning of the escape sequence, whether <BREAK> AT or +++AT , and the receipt of a <CR>.
114 Appendix APPENDIX I Introduction to Remote Configuration Remote configuration, a feature of Multi-Tech’s MT2834MR6 modems, is a network management tool that allows you to configure modems anywhere in your network from one location.
115 Appendix Changing the Passwords 1. Establish a remote configuration link with the remote modem as described above. 2. Type AT#IMULTI-TECH (or AT#I xxxxxx if you have replaced the MULTI-TECH password with xxxxxx ) and press ENTER. The modem responds with OK if the login password is correct, and ERROR if it is wrong.
Index.
117 Index Index A Abort timer 19, 21, 28, 29, 59, 63 Analog loopback test 82 Answer command 21, 52 Answer mode 27, 46, 52 Answer Tone command 36 Answerback command 35 Answering a call 52, 63 Asymmetri.
118 Index A: 26 A T 21, 22 attention code 21, 22 B3 6 command string limit 22 D 21, 26 D ...N... 30 disabling command mode 21, 36 E3 4 editing 22 functional summary 23, 24, 25 H 19, 26 I4 7 L3 1 L10 54 L11 54 L5 47 , 64 L6 47 , 64 L7 47 , 64 L8 47 , 55 L9 54 N3 0 N.
119 Index CTS signal control of 41 disconnect drop time 60 flow control 49 RTS interaction 42 CTS/RTS interaction control 42 D DAA 9 Data bit 49 Data compression 66, 68, 74 speed conversion 45 Data Co.
120 Index Flash On-Hook command 28 Flow control 41, 49, 50, 51, 74 commands 49 CTS/RTS enable 49 disabling 49 hardware (RTS/CTS) 72 no-error correction mode 73 non-error correction mode 50 software (X.
121 Index P Pacing 49, 50, 73 enable/disable 51 ENQ/ACK 50, 73 Pacing command 51, 74 Parameters 22, 32, 47 default 22, 41 Parity 49 PBX phone systems 27, 60 PBX/CBX disconnect drop time 41, 42, 60 Pow.
122 Index S9 59 S94 38, 62 summary 96 Safety 16 Serial port baud rate 46 Serial Port Baud Rate command 77 Set Pulse Dial Ratios command 92 Setup Password command 53 Smart dialing 26, 28, 35 Specificat.
S000326A.
Un punto importante, dopo l’acquisto del dispositivo (o anche prima di acquisto) è quello di leggere il manuale. Dobbiamo farlo per diversi motivi semplici:
Se non hai ancora comprato il Multitech MT2834MR6 è un buon momento per familiarizzare con i dati di base del prodotto. Prime consultare le pagine iniziali del manuale d’uso, che si trova al di sopra. Dovresti trovare lì i dati tecnici più importanti del Multitech MT2834MR6 - in questo modo è possibile verificare se l’apparecchio soddisfa le tue esigenze. Esplorando le pagine segenti del manuali d’uso Multitech MT2834MR6 imparerai tutte le caratteristiche del prodotto e le informazioni sul suo funzionamento. Le informazioni sul Multitech MT2834MR6 ti aiuteranno sicuramente a prendere una decisione relativa all’acquisto.
In una situazione in cui hai già il Multitech MT2834MR6, ma non hai ancora letto il manuale d’uso, dovresti farlo per le ragioni sopra descritte. Saprai quindi se hai correttamente usato le funzioni disponibili, e se hai commesso errori che possono ridurre la durata di vita del Multitech MT2834MR6.
Tuttavia, uno dei ruoli più importanti per l’utente svolti dal manuale d’uso è quello di aiutare a risolvere i problemi con il Multitech MT2834MR6. Quasi sempre, ci troverai Troubleshooting, cioè i guasti più frequenti e malfunzionamenti del dispositivo Multitech MT2834MR6 insieme con le istruzioni su come risolverli. Anche se non si riesci a risolvere il problema, il manuale d’uso ti mostrerà il percorso di ulteriori procedimenti – il contatto con il centro servizio clienti o il servizio più vicino.