Manuale d’uso / di manutenzione del prodotto VL20 del fabbricante Maxtor
Vai alla pagina of 70
DiamondMax ® VL 20 92041U4, 91531U3 and 91021U2 All material contained herein Copyright © 1999 Maxtor Corporation. MaxFax™ is a trademark of Maxtor Corporation. DiamondMax ® , Maxtor ® and No Quibble ® Service are registered trademarks of Maxtor Corporation.
Before Y ou Begin Thank you for your interest in the Maxtor DiamondMax ® VL 20 AT hard disk drives. This manual provides technical information for OEM engineers and systems integrators regarding the installation and use of DiamondMax hard drives. Drive repair should be performed only at an authorized repair center.
DIAMONDMAX VL 20 PRODUCT MANUAL i Contents Section 1 — Introduction Maxtor Corporation 1 - 1 Products 1 - 1 Support 1 - 1 Manual Organization 1 - 1 Abbreviations 1 - 1 Conventions 1 - 2 Key Words 1 .
DIAMONDMAX VL 20 PRODUCT MANUAL ii Section 3 — Product Specifications Models and Capacities 3 - 1 Drive Configuration 3 - 1 Performance Specifications 3 - 1 Physical Dimensions 3 - 2 Power Requireme.
DIAMONDMAX VL 20 PRODUCT MANUAL iii Ultra Direct Memory Access (UDMA) 4 - 5 OS Requirements for Large Capacity Hard Drives 4 - 5 Hard Drive Identification 4 - 6 Identifying IDE Devices on the Interfac.
DIAMONDMAX VL 20 PRODUCT MANUAL iv Device Control Register 6 - 5 Digital Input Register 6 - 5 Reset and Interrupt Handling 6 - 6 Section 7 — Interface Commands Command Summary 7 - 1 Read Commands 7 .
DIAMONDMAX VL 20 PRODUCT MANUAL v Figures Figure Title Page 2 - 1 PCBA Jumper Location and Configuration 2 - 6 3 - 1 Outline and Mounting Dimensions 3 - 2 4 - 1 Multi-pack Shipping Container 4 - 2 4 -.
DIAMONDMAX VL 20 – INTRODUCTION 1 – 1 SECTION 1 Introduction Maxtor Corporation Maxtor Corporation has been providing high-quality computer storage products since 1982. Along the way, we’ve seen many changes in data storage needs. Not long ago, only a handful of specific users needed more than a couple hundred megabytes of storage.
DIAMONDMAX VL 20 – INTRODUCTION 1 – 2 Conventions If there is a conflict between text and tables, the table shall be accepted as being correct. Key Words The names of abbreviations, commands, fields and acronyms used as signal names are in all uppercase type (e.
PRODUCT DESCRIPTION 2 – 1 SECTION 2 Product Description Maxtor DiamondMax ® VL 20 AT disk drives are 1-inch high, 3.5-inch diameter random access storage devices which incorporate an on-board ATA-5/Ultra DMA 66 controller.
PRODUCT DESCRIPTION 2 – 2 Product Features Functional / Interface Maxtor DiamondMax VL 20 hard drives contain all necessary mechanical and electronic parts to interpret control signals and commands from an AT-compatible host computer. See Section 3 Product Specifications, for complete drive specifications.
PRODUCT DESCRIPTION 2 – 3 Logical Block Addressing The Logical Block Address (LBA) mode can only be utilized in systems that support this form of translation. The cylinder, head and sector geometry of the drive, as presented to the host, differs from the actual physical geometry.
PRODUCT DESCRIPTION 2 – 4 Cache Management Buffer Segmentation The data buffer is organized into two segments: the data buffer and the micro controller scratch pad. The data buffer is dynamically allocated for read and write data depending on the commands received.
PRODUCT DESCRIPTION 2 – 5 Major HDA Components Drive Mechanism A brush-less DC direct drive motor rotates the spindle at 5,400 RPM (±0.1%). The dynamically balanced motor/spindle assembly ensures minimal mechanical run-out to the disks. A dynamic brake provides a fast stop to the spindle motor upon power removal.
PRODUCT DESCRIPTION 2 – 6 Figure 2-1 PCBA Jumper Location and Configuration Cylinder Limitation Jumper Description On some older BIOS', primarily those that auto-configure the disk drive, a hang may occur. The Cylinder Limitation jumper reduces the capacity in the Identify Drive allowing large capacity drives to work with older BIOS'.
PRODUCT SPECIFICATIONS 3 – 1 SECTION 3 Product Specifications Models and Capacities Performance Specifications L E D O M4 U 1 4 0 2 93 U 1 3 5 1 92 U 1 2 0 1 9 e c a f r e t n I / r e l l o r t n o .
PRODUCT SPECIFICATIONS 3 – 2 Physical Dimensions 1 .028 max [25.9 mm] .25 ± .0 1 1 .122 ± .02 [28.4 mm] 1 .638 ± .005 [41 .61 mm] 1 .625 ± .02 4.000 ± .0 1 [1 0 1 .6 mm] 1 .75 ± .02 5.787 max [1 46.6 mm] 6 x 6-32 UNC T ap 4 x 6-32 UNC T ap 4.00 ± .
PRODUCT SPECIFICATIONS 3 – 3 Power Requirements Power Mode Definitions Spin-up The drive is spinning up following initial application of power and has not yet reached full speed. Seek A random access operation by the disk drive. Read/Write Data is being read from or written to the drive.
PRODUCT SPECIFICATIONS 3 – 4 Reliability Specifications Annual Return Rate < 1.0% Annual Return Rate (ARR) indicates the average against products shipped. ARR includes all reasons for returns (failures, handling damage, NDF), but does not include inventory credit returns.
PRODUCT SPECIFICATIONS 3 – 5 EMC/EMI Radiated Electromagnetic Field Emissions - EMC Compliance The hard disk drive mechanism is designed as a subassembly for installation into a suitable enclosure a.
INSTALLATION 4 – 1 SECTION 4 Handling and Installation Pre-formatted Drive This Maxtor hard drive has been formatted at the factory. Do not use a low-level formatting program. Hard Drive Handling Precautions ◆ If the handling precautions are not followed, damage to the hard drive may result - which may void the warranty.
INSTALLATION 4 – 2 Unpacking and Inspection Retain any packing material for reuse. Inspect the shipping container for evidence of damage in transit. Notify the carrier immediately in case of damage to the shipping container. As they are removed, inspect drives for evidence of shipping damage or loose hardware.
INSTALLATION 4 – 3 Figure 4 - 2 Single Pack Shipping Container (Option A) Figure 4 - 3 Single Pack Shipping Container (Option B) Repacking If a Maxtor drive requires return, repack it using Maxtor packing materials, including the antistatic bag.
INSTALLATION 4 – 4 1 Before Y ou Begin IMPORTANT – PLEASE READ! Please read this Installation Sheet completely before installing the Maxtor hard drive.
INSTALLATION 4 – 5 3 Hard Drive Identification IDE stands for Integrated Drive Electronics and EIDE is Enhanced IDE. The IDE or EIDE interface is designed to support two devices – typically hard drives – on a single ribbon cable through one 40 pin connector on the mother board or interface card.
INSTALLATION 4 – 6 4 Mounting Drive in System Turn the computer OFF, disconnect the power cord and remove the cover. Refer to the computer user’s manual for information on removing the cover. Each system manufacturer uses different types of cases, including desktop, mini-tower, full tower and other special configurations.
INSTALLATION 4 – 7 5 At tac hing Interface and P o w er Cables In order for the computer to recognize that the Maxtor hard drive is in the system, the power cable and IDE interface cable must be properly connected. 1 Attach an available IDE interface connector to J1 on the Maxtor hard drive.
INSTALLATION 4 – 8 7 System Setup The following procedures are designed for systems using the DOS 5.0 (or higher), Windows 95 and Windows 98 operating systems. For other operating systems (e.g., Windows NT, OS2, UNIX, LINUX and Novell NetWare), refer to the operating system user’s manual for the BIOS setting and other installation requirements.
INSTALLATION 4 – 9 drive parameters must be set using the User Definable Type (UDT). Set the Cylinder, Head and Sector values with the values listed on the drive label. The drive label is located on the top cover of the drive. The fields LZone (Landing Zone) and WPcom (Write Pre-comp) are not used by the Maxtor hard drive.
INSTALLATION 4 – 10 3 If the BIOS was set to AUTO DETECT, follow the instructions in Section 7 to prepare the hard drive using the MaxBlast installation software.
AT INTERFACE DESCRIPTION 5 – 1 SECTION 5 A T Interface Description Interface Connector All DiamondMax ® VL 20 AT drives have a 40-pin ATA interface connector mounted on the PCBA. The drive may connect directly to the host; or it can also accommodate a cable connection (max cable length: 18 inches).
AT INTERFACE DESCRIPTION 5 – 2 Pin Description Table E M A N N I PN I PO / IE M A N L A N G I SN O I T P I R C S E D L A N G I S - T E S E R1 0I t e s e R t s o H .
AT INTERFACE DESCRIPTION 5 – 3 S R E T E M A R A P G N I M I T0 E D O M1 E D O M2 E D O M3 E D O M4 E D O M 0 t) n i m ( e m i T e l c y Cs n 0 0 6s n 3 8 3s n 0 4 2s n 0 8 1s n 0 2 1 1 t) n i m ( p.
AT INTERFACE DESCRIPTION 5 – 4 DMA Timing S R E T E M A R A P G N I M I T0 E D O M1 E D O M2 E D O M 0 t) n i m ( e m i T e l c y Cs n 0 8 4s n 0 5 1s n 0 2 1 C ty a l e d Q R A M D o t K C A M D D .
AT INTERFACE DESCRIPTION 5 – 5 Ultra DMA Timing S R E T E M A R A P G N I M I T ) s d n o c e s o n a n n i s e m i t l l a ( 0 E D O M1 E D O M2 E D O M3 E D O M4 E D O M N I MX A MN I MX A MN I MX.
AT INTERFACE DESCRIPTION 5 – 6 Figure 5 - 5 Sustained Ultra DMA Data In Burst t DVH DSTROBE at d evice DD(15:0) at d evice DSTROBE at ho s t DD(15:0) at ho s t t DVH t CYC t CYC t DVS t DVS t DH t D.
AT INTERFACE DESCRIPTION 5 – 7 t AZ t IORDYZ CRC DMARQ ( device ) DMACK- (host) STOP (host) HDMARDY- (host) DSTROBE ( device ) DD(15:0) DA0, DA1, DA2, CS0-, CS1- t ACK t LI t MLI t DVS t LI t ACK t .
AT INTERFACE DESCRIPTION 5 – 8 t DH t DS t DVH HSTROBE at ho s t DD(15:0) at ho s t HSTROBE at d evice DD(15:0) at d evice t DVH t CYC t CYC t DVS t DVS t DS t DH t 2CYC t DH t DVH t 2CYC DMARQ (dev.
AT INTERFACE DESCRIPTION 5 – 9 DMARQ (device) DMACK- (host) STOP (host) DDMARDY- (device) HSTROBE (host) DD(15:0) (host) t SR t RFS t RP Figure 5 - 11 Device Pausing an Ultra DMA Data Out Burst DMAR.
AT INTERFACE DESCRIPTION 5 – 10 DMARQ (device) DMACK- (host) STOP ( host ) DDMARDY- ( device ) HSTROBE (host) DD(15:0) (host) DA0, DA1, DA2, CS0- , CS1- t ACK t MLI t DVS t LI t LI t ACK CRC t DVH t.
HOST SOFTWARE INTERFACE 6 – 1 SECTION 6 Host So ftw are Interface The host communicates with the drive through a set of controller registers accessed via the host’s I/O ports. These registers divide into two groups: the Task File, used for passing commands and command parameters and the Control/Diagnostic registers.
HOST SOFTWARE INTERFACE 6 – 2 Sector Count Register Holds the number of sectors to be sent during a Read or Write command, and the number of sectors per track during a Format command. A value of zero in this register implies a transfer of 256 sectors.
HOST SOFTWARE INTERFACE 6 – 3 Command Register Contains code for the command to be performed. Additional command information should be written to the task file before the Command register is loaded. When this register is written, the BUSY bit in the Status register sets, and interrupt request to the host clears; invalid commands abort.
HOST SOFTWARE INTERFACE 6 – 4 D E S U S R E T E M A R A P E D O C D N A M M O C E M A N D N A M M O C 7 b6 b5 b4 b3 b2 b1 b0 bF C SN SC H D S e t a r b i l a c e R 0 00 1 xxxx NNNN D ) s ( r o t c e.
HOST SOFTWARE INTERFACE 6 – 5 Control Diagnostic Registers These I/O port addresses reference three Control/Diagnostic registers: T R O P O / ID A E RE T I R W h 6 F 3s u t a t S e t a n r e t l Al .
HOST SOFTWARE INTERFACE 6 – 6 Reset and Interrupt Handling Reset Handling One of three different conditions may cause a reset: power on, hardware reset or software reset. All three cause the interface processor to initialize itself and the Task File registers of the interface.
INTERFACE COMMANDS 7 – 1 SECTION 7 Interface Commands The following section describes the commands (and any parameters necessary to execute them), as well as Status and Error register bits affected.
INTERFACE COMMANDS 7 – 2 Read Commands Read Sector(s) Reads from 1 to 256 sectors, as specified in the Command Block, beginning at the specified sector. (A sector count of 0 requests 256 sectors.) Immediately after the Command register is written, the drive sets the BSY bit and begins execution of the command.
INTERFACE COMMANDS 7 – 3 Read DMA Multi-word DMA Identical to the Read Sector(s) command, except that 1 . The host initializes a slave-DMA channel prior to issuing the command, 2 . Data transfers are qualified by DMARQ and are performed by the slave-DMA channel and 3 .
INTERFACE COMMANDS 7 – 4 Set Multiple Mode Enables the controller to perform Read and Write Multiple operations, and establishes the block count for these commands. Before issuing this command, the Sector Count register should be loaded with the number of sectors per block.
INTERFACE COMMANDS 7 – 5 Write Multiple Performs similarly to the Write Sector(s) command, except that: 1 . The controller sets BSY immediately upon receipt of the command, 2 . Data transfers are multiple sector blocks and 3 . The Long bit and Retry bit is not valid.
INTERFACE COMMANDS 7 – 6 Set Feature Commands Set Features Mode Enables or disables features supported by the drive. When the drive receives this command it: 1 . Sets BSY, 2 . Checks the contents of the Features register, 3 . Clears BSY and 4 . Generates an interrupt.
INTERFACE COMMANDS 7 – 7 Power Mode Commands Standby Immediate – 94h/E0h Spin down and do not change time out value. This command will spin the drive down and cause the drive to enter the STANDBY MODE immediately. If the drive is already spun down, the spin down sequence is not executed.
INTERFACE COMMANDS 7 – 8 When enabling the Automatic Power Down sequence, the value placed in the Sector Count register is multiplied by five seconds to obtain the Time-out Interval value. If no drive commands are received from the host within the Time-out Interval, the drive automatically enters the STANDBY mode.
INTERFACE COMMANDS 7 – 9 Initialization Commands Identify Drive Allows the host to receive parameter information from the drive. When the command is received, the drive: 1 . Sets BSY, 2 . Stores the required parameter information in the sector buffer, 3 .
INTERFACE COMMANDS 7 – 10 D R O WN O I T P I R C S E D T N E T N O C 0 5d e v r e s e R 1 5e d o m r e f s n a r t a t a d O I P = 8 - 5 1 d e s u t o n = 0 - 7 2 5e d o m r e f s n a r t a t a d A .
INTERFACE COMMANDS 7 – 11 D R O WN O I T P I R C S E D T N E T N O C 3 8 t o n n o i t a c i f i t o n t e s d n a m m o c h F F F F r o h 0 0 0 0 = 4 8 d n a 3 8 , 2 8 s d r o w f I .
INTERFACE COMMANDS 7 – 12 Initialize Drive Parameters Enables the drive to operate as any logical drive type. The drive will always be in the translate mode because of Zone Density Recording, which varies the number of sectors per track depending on the zone.
INTERFACE COMMANDS 7 – 13 Seek, Format and Diagnostic Commands Seek Initiates a seek to the track, and selects the head specified in the Command block. 1 . Sets BSY in the Status register, 2 . Initiates the Seek, 3 . Resets BSY and 4 . Generates an interrupt.
INTERFACE COMMANDS 7 – 14 S.M.A.R.T. Command Set Execute S.M.A.R.T. The Self-Monitoring Analysis and Reporting Technology (S.M.A.R.T.) command has been implemented to improve the data integrity and data availability of hard disk drives. In some cases, a S.
SERVICE AND SUPPORT 8 – 1 SECTION 8 Service and Support Service and Support Service and Support Service and Support Service and Support Service Policy Service Policy Service Policy Service Policy Se.
SERVICE AND SUPPORT 8 – 2 Asia/Pacific (APAC) Australia Languages supported: English Vo x + 61 2 9369 3662 Fax + 61 2 9369 2082 MaxFax + 61 2 9369 4733 BB S + 61 2 9369 4293 Sin gap ore Languages su.
GLOSSARY GL – 1 GLOSSAR Y Glossary Glossary Glossary Glossary Glossary A A A A A access To obtain data from, or place data into, RAM, a register, or data storage device. access time The interval between the issuing of an access command and the instant that the target data may be read or written.
GLOSSARY GL – 2 central processing unit (CPU) The heart of the computer system that executes programmed instructions. It includes the arithmetic logic unit (ALU) for performing all math and logic op.
GLOSSARY GL – 3 digital magnetic recording See magnetic recording. direct access Access directly to memory location. (See random access). direct memory access (DMA) A mean of data transfer between the device and host memory without processor intervention.
GLOSSARY GL – 4 frequency response A measure of how effectively a circuit or device transmits the different frequencies applied to it. In disk and tape drives this refers to the read/write channel. In disk drives, it can also refer to the dynamic mechanical characteristics of a positioning system.
GLOSSARY GL – 5 late window A data window that has been shifted in a late direction to facilitate data recovery. latency A delay encountered in a computer when waiting for a specific response. In a disk drive there is both seek latency and rotational latency.
GLOSSARY GL – 6 P P P P P parallelism 1. The condition of two planes or lines being parallel. Important in disk drives because a lack of it in mechanical assemblies can result in positioning inaccuracy. More precisely: planes-coplanar; lines-colinear.
GLOSSARY GL – 7 S S S S S sector A logical segment of information on a particular track. The smallest addressable unit of storage on a disk. Tracks are made of sectors. sector pulse signal A digital signal pulse present in hard sectored drives which indicates the beginning of a sector.
GLOSSARY GL – 8 strobe offset signal A group of digital input signal levels which cause the read PLL and/or data decoder to shift the decoding windows by fractional amounts.
Un punto importante, dopo l’acquisto del dispositivo (o anche prima di acquisto) è quello di leggere il manuale. Dobbiamo farlo per diversi motivi semplici:
Se non hai ancora comprato il Maxtor VL20 è un buon momento per familiarizzare con i dati di base del prodotto. Prime consultare le pagine iniziali del manuale d’uso, che si trova al di sopra. Dovresti trovare lì i dati tecnici più importanti del Maxtor VL20 - in questo modo è possibile verificare se l’apparecchio soddisfa le tue esigenze. Esplorando le pagine segenti del manuali d’uso Maxtor VL20 imparerai tutte le caratteristiche del prodotto e le informazioni sul suo funzionamento. Le informazioni sul Maxtor VL20 ti aiuteranno sicuramente a prendere una decisione relativa all’acquisto.
In una situazione in cui hai già il Maxtor VL20, ma non hai ancora letto il manuale d’uso, dovresti farlo per le ragioni sopra descritte. Saprai quindi se hai correttamente usato le funzioni disponibili, e se hai commesso errori che possono ridurre la durata di vita del Maxtor VL20.
Tuttavia, uno dei ruoli più importanti per l’utente svolti dal manuale d’uso è quello di aiutare a risolvere i problemi con il Maxtor VL20. Quasi sempre, ci troverai Troubleshooting, cioè i guasti più frequenti e malfunzionamenti del dispositivo Maxtor VL20 insieme con le istruzioni su come risolverli. Anche se non si riesci a risolvere il problema, il manuale d’uso ti mostrerà il percorso di ulteriori procedimenti – il contatto con il centro servizio clienti o il servizio più vicino.