Manuale d’uso / di manutenzione del prodotto MG3641A del fabbricante Anritsu
Vai alla pagina of 212
Document No.: M-W1 137AE-13.0 ANRITSU CORPORA TION MG3641A/MG3642A Synthesized Signal Generator Operation Manual For safety and warning information, please read this manual before attempting to use the equipment.
ii Safety Symbols T o prevent the risk of personal injury or loss related to equ ipment malfunction, Anrit su Co rporation uses the foll owing safety symbols to indicate safety-rela ted information. Ensure that you cl early understand the meanings of the symbols BEFORE using the equipment.
For Safety iii WARNING 1. ALWAYS refer to the operation manual when working near locations at which the alert mark shown on t he left is attached. If the advice in the operation manual is not followed there is a risk of perso nal injury or reduced equip ment performance.
For Safety iv WARNING 3. To ensure that the instrument is earthed, always use the supplied 3- pin power cord, and inse rt the plug into an outlet with an earth terminal. If power is supplied without earthing the e quipment, there is a risk of receiving a severe or fatal electric shock or causing damage to the internal component s.
For Safety v CAUTION 1. Always remove the mains power cable from the powe r outlet before replacing blown fuse s. There is a risk of electric shock if fuses are replaced with the power cable co nnected. Always use new fuses of the type and rating specified on the rear panel of the instrument.
For Safety vi CAUTION This equipment uses a Poly-carbomonofluo ride lithium battery to backup the memory. This battery mus t be replaced by service personnel when it has reached the end of its useful lif e; contact the Anritsu sales section or your nearest representative.
vii Equipment Certificate Anritsu Corporation certifies that this equipment was tested before shipment using calibrated m easuring instruments with dir ect traceability to public testing organizations.
viii Notes On Export Management This product and it s manuals may require an Expo rt License/Approval by the Government of the product's country of origi n for re-export from you r country . Before re-exporting the product or ma nuals, please cont act us to confirm whether they are export -controlled items or n ot.
ix Crossed-out Wheeled Bin Symbol Equipment mark ed with the Crossed-out Wheeled Bin Symb ol complies with council direct ive 2002/96/EC (the “WEEE Dir ective”) in E uropean Union.
x CE Conformity Marking Anritsu affixes the CE conf ormity marking on th e following product ( s) in accordance with the Council Dir ective 93/68/EEC to indicate that they conform to the EM C and LVD directiv e of the European Un ion (EU). CE marking 1.
xi Harmonic current emissions: EN 61000-3-2: 2006 (Class A equ ipment) • LVD: EN 61010-1: 2001 (Pollution Degree 2) 4. Authorized representative Name: Loic Metais European Quality Manager ANRITSU S.
xii C-tick Conformity Marking Anritsu affixes the C-tick mark on the following product(s) in accordance with the regulation to indicate that they con form to the EMC framework of Australia/New Zealand. C-tick marking 1. Product Model Model: MG3641A/MG3642A Synthesezed Signal Generator 2.
xiii Power Line Fuse Protection For safety, Anritsu products have either one or two fuses in the AC p ower lines as requested by the cust omer when ord ering. Single fuse: A fus e is inserted in one of th e AC power lines. Double fuse: A fuse is inserted in each of the A C power lines.
xiv.
I TABLE OF CONTENTS For Safety ................................................................................................................. iii SECTION 1 GENERAL ....................................................................................
II 4.5.4 Level Continuous Mode ................................................................................. 4-14 4.5.5 Switching the Output Signal On/Off .............................................................. 4-15 4.5.6 Special Functions Related to Level .
III 5.2 Measuring the 1-signal Selectivity ................................................................................... 5-4 5.2.1 Measuring selectivity characteristics of the FM receiver in 20 dB NQ method ......................................
IV 6.7.6 Modulation source subsystem ........................................................................ 6-42 6.7.7 MEMORY subsystem .................................................................................... 6-45 6.7.8 Display subsystem .
SECTION 1 GENERAL 1-1 SECTION 1 GENERAL 1.1 Brief Description The MG3641A/MG3642A is a synthesized signal generator capable of outputing highly accurate, highly pure signals over a broad frequency range.
SECTION 1 GENERAL 1-2 1.2 Operation Manual This operation manual contains 9 sections and 5 appendixes. The format and outline of each section is described below.
SECTION 1 GENERAL 1-3 1.3 Composition of Devices The composition of standard accessories to the MG3641A/MG3642A will be explained in this section. 1.3.1 Standard Composition The table below shows the standard composition of devices for the MG3641A/MG3642A.
SECTION 1 GENERAL 1-4 Model number/ Order number Name Frequency: 10 MHz Aging rate: 5 × 10 –10 /day Temperature caracteristics: ± 5 × 10 –9 (at 0 to 50 ° C) Frequency : 0.01 Hz to 400 kHz (sine wave) : 0.01 Hz to 50 kHz (triangular, square, sawtooth wave) Resolution : 0.
SECTION 1 GENERAL 1-5 1.4 Application Parts The table below lists application parts for the MG3641A/MG3642A, which are all optional purchase items. Table 1-4.
SECTION 1 GENERAL 1-6 Frequency Carrier Range 125 kHz to 1040 MHz: MG3641A 125 kHz to 2080 MHz: MG3642A Resolution 0.01 Hz Accuracy Dependent on the accuracy of the reference oscillator.
SECTION 1 GENERAL 1-7 Interference radiation When measured with 50 Ω -terminated voltage using a two-loop antenna of 25 mm in diameter at 25 mm away from the case: <0.
SECTION 1 GENERAL 1-8 Specifications (continued) Amplitude Incidental FM Wit h r eference to ≥ 0.4 MHz, ≤ +7 dBm, AM ≤ 30 %, Source=Int1 1 kHz, and in a 300 Hz to 3 kHz demodulation band: <20.
SECTION 1 GENERAL 1-9 Specifications (continued) Pulse See specifications of options. modulation Modulation Internal modulation (Int1) Frequency: 400 Hz/1 kHz (Switched over) Frequency accuracy: Equal to the accuracy of the reference oscillator. signal source Internal modulation See specifications of options.
SECTION 1 GENERAL 1-10 Other functions Relative value display Carrier frequency and output level Offset display Carrier frequency and output level Memory 1000 panel setting conditions can be stored and recalled. Recall mode: All panel settings, Frequency only, Frequency and Level.
SECTION 1 GENERAL 1-11 <Option> ■ Option 01 (Reference crystal oscillator) ● Frequency 10MHz ● Aging rate 5 × 10 -10 /day ● Temperature characteristics ± 5 × 10 -9 (0 to 50 ° C) ■ Option 11 (Pulse modulator) ● Frequency 0.125 to 2080MHz ● On/Off ratio >80dB ● Rise/Fall time <100ns ● Min.
SECTION 1 GENERAL 1-12. (Blank).
SECTION 2 PRECAUTION 2-1 SECTION 2 PRECAUTION This section describes the preparatory work which must be performed before using the MG3641A/MG3642A Synthesized Signal Generator and the precautions relating to (1) installation and (2) power supply. For GPIB cable connection, address setting, etc, see Section 6.
SECTION 2 PRECAUTION 2-2 To protect circuits from an abnormal rise in the internal temperature, the MG3641A/MG3642A has a built-in thermal protector. When the thermal protector operates, the MG3641A/MG3642A enters stand-by status (the stby lamp lights).
SECTION 2 PRECAUTION 2-3 2.3 Mounting the MG3641A/MG3642A in the Frame An optional rack mount kit is required to mount the MG3641A/MG3642A in the frame.
SECTION 2 PRECAUTION 2-4 2.4 Preparation Before Power-On The MG3641A/MG3642A normally operates by connecting the power having the voltage range +10 % to – 15 % for the specified nominal voltage 100 to 240 Vac.
SECTION 2 PRECAUTION 2-5 2.4.1 Connecting the Power Cord Check that the " ● | " switch on the rear panel is turned off (switched to the (O) side). Insert the power plug into an outlet, and connect the other end to the power inlet on the rear panel.
SECTION 2 PRECAUTION 2-6 2.4.2 Fuse Replacement The MG3641A/MG3642A is supplied with two 5 A or 3.15 A fuses shown in Table 1-2. The fuses are to be loaded inside the fuse holders shown in Figure 2-2. If a fuse blows, locate the fault and correct the cause before replacing.
3-1 SECTION 3 PANEL LAYOUT Description Used to select and execute the functions corresponding to the key menus displayed on the multi-menu display. Displays the operation and state of the modulation, sweep, etc.
3-2 SECTION 3 PANEL LAYOUT No 14 15 16 17 18 19 20 21 22 23 24 25 Name, display Output Level Rotary Knob, Resolution [<] and [>] keys RF Output connector [RF Off/On] key Entry [GHz/wdBm], [MHz/d.
3-3 SECTION 3 PANEL LAYOUT Description Exhausts the heat generated inside the MG3641A/MG3642A to the outside. Do not leave anything to obstruct the air flow around the fan. Fine-adjusts the frequency of the internal base oscillator . Used in GPIB remote control mode.
3-4 SECTION 3 PANEL LAYOUT 3.1.3 Panel layout diagram Figures 3-1 and 3-2 show the front and rear panel diagrams, respectively. The numbers in the diagrams correspond to those in the paragraphs 3.
SECTION 4 OPERATING INSTRUCTIONS 4-1 SECTION 4 OPERATING INSTRUCTIONS 4.1 Turning Power On/Off The MG3641A/MG3642A comes provided with two power switches, namely, the "Stby/On" switch on the front panel and the " " switch on the rear panel.
SECTION 4 OPERATING INSTRUCTIONS 4-2 In case the AC line voltage fed to the unit is not an appropriate one, the interior of the signal generator may be damaged because of abnormal voltages. Before switching on the MG3641A/MG3642A, check to make sure that the AC line voltage meets the specified value.
SECTION 4 OPERATING INSTRUCTIONS 4-3 • If you use a 3-pole power cord fitted with a ground terminal, you do not have to do this grounding connection. • When this button is pressed and remains depressed, it is in the " " (On) position. To turn it off, bring the button up by pressing it again.
SECTION 4 OPERATING INSTRUCTIONS 4-4 4.1.2 Turning Power Off To turn the power off, follow the same procedure detailed in Item 4.1.1 inversely..
SECTION 4 OPERATING INSTRUCTIONS 4-5 4.2 Explanation of Screens This signal generator is equipped with a multi-menu display for indicating statuses and setting operations, except for the major items, such as frequency, output level, memory, etc.
SECTION 4 OPERATING INSTRUCTIONS 4-6 4.3 Initial Settings You can return the panel settings of the MG3641A/MG3642A to the initial setting conditions by pressing the [Preset] key. The term "Initial Settings" as used herein refers to the conditions under which the signal generator was shipped out of the factory (Appendix A).
SECTION 4 OPERATING INSTRUCTIONS 4-7 (2) Select "Initial memory set" by pressing the " ↓ " [F2] key or " ↑ " [F3] key (the characters are highlighted). ( 3 ) As you press the "Sel" [F1] key, the current panel settings will be written to the preset memory.
SECTION 4 OPERATING INSTRUCTIONS 4-8 4.4 Setting the Frequency 4.4.1 Setting the Frequency You can set up a frequency by operating the number keys, step keys, and rotary knob. Pressing the [Frequency] key in the Entry zone turns on the lamp of the [Frequency] key and the Frequency lamp in the Edit zone.
SECTION 4 OPERATING INSTRUCTIONS 4-9 4.4.2 Displaying the Frequency Relative Value To display a frequency in a relative value referred to the current frequency defined as reference (0 Hz), you press the [Rel Freq] key. The lamp of the key will come on, causing the Frequency indicator to display +0 Hz.
SECTION 4 OPERATING INSTRUCTIONS 4-10 4.4.3 Frequency Offset Frequency offset means a function to offset a set frequency and a displayed frequency against the frequency to be actually output.
SECTION 4 OPERATING INSTRUCTIONS 4-11 4.5 Setting the Output Level 4.5.1 Setting the Output Level You can set up an output level by operating the number keys, step keys and the rotary knob. Pressing the [Level] key in the Entry zone turns on the [Level] key lamp, indicating that the unit is readied for setting an output level via the number keys.
SECTION 4 OPERATING INSTRUCTIONS 4-12 4.5.2 Displaying the Output Level Relative Value To display a level in a relative value referred to the current output level defined as reference (0 dB), press the [Rel Level] key. The lamp of the key will come on, causing the Output Level indicator to display +0 dB.
SECTION 4 OPERATING INSTRUCTIONS 4-13 4.5.3 Output Level Offset Output level offset means a function to offset a set level and a displayed level against the level to be actually output.
SECTION 4 OPERATING INSTRUCTIONS 4-14 4.5.4 Level Continuous Mode This signal generator employs a mechanical attenuator to vary the output level. For this reason, momentary signal interruptions and spike noise may be produced when you vary the output level.
SECTION 4 OPERATING INSTRUCTIONS 4-15 4.5.5 Switching the Output Signal On/Off You can switch on and off the output signal that goes through the output connector by pressing the [RF Off/On] key. When the output signal is cut off, the lamp of the [RF Off/On] key will light up.
SECTION 4 OPERATING INSTRUCTIONS 4-16 4.5.6 Special Functions Related to Level The signal generator offers the following functions as special functions related to the setting of output levels. You activate these functions through the "System (2)" menu.
SECTION 4 OPERATING INSTRUCTIONS 4-17 (1) Press the "Sys" [F3] key in the main menu (2) to open the "System (1)" menu. (2) Press the [More] key to move on to the "System (2)" menu.
SECTION 4 OPERATING INSTRUCTIONS 4-18 4.6 Setting the Modulation 4.6.1 Outline of Modulation This signal generator provides AM and FM modulation functions. The FM modulation has two systems: FM1 and FM2, frequency deviation of which can be set independently of each other.
SECTION 4 OPERATING INSTRUCTIONS 4-19 4.6.2 Setting the Modulation Function You select activation/deactivation of each modulation type and a modulation signal source always through the "Modulation" menu. (1) Press the [Modulation] key or Main Menu (1) "Mod" [F1] key to open the "Modulation" menu.
SECTION 4 OPERATING INSTRUCTIONS 4-20 4.6.3 Setting the Modulation Factor and Frequency Deviation You set an AM modulation factor or FM frequency deviation by operating the number keys, step keys and the rotary knob.
SECTION 4 OPERATING INSTRUCTIONS 4-21 4.6.4 Setting Range of FM Frequency Deviation In setting an FM frequency deviation, you can set it up to maximum 2048 kHz, irrespective of the output frequency. However, the actual FM frequency deviation is restricted by the output frequency, as shown in the table below.
SECTION 4 OPERATING INSTRUCTIONS 4-22 4.6.6 Pulse Modulation The pulse modulator (an option) can be built into the MG3641A/MG3642A. The pulse modulator can apply modulation with TTL level signals applied to the "Pulse Mod Input" connector.
SECTION 4 OPERATING INSTRUCTIONS 4-23 ( 2 ) Select the item you need to change (ON/OFF or impedance) in the "PM" line by the " ↓ " [F2], and " → " [F3] keys (the characters are highlighted). (3) Press the "Sel" [F1] key to change the setting.
SECTION 4 OPERATING INSTRUCTIONS 4-24 4.7 Setting the Modulation Signal Source 4.7.1 Internal Modulation Signal (Int1) Int1 is a signal source that generates sine waves at a frequency of either 1 kHz or 400 Hz.
SECTION 4 OPERATING INSTRUCTIONS 4-25 4.7.2 Internal Modulation Signals (Int2, Int3) Int2 and Int3 are options. The following description of Int2 and Int3 assumes that AF Synthesizer (opt21) is mounted in them both. If another option is mounted, follow the operation description in the operation manual of that option.
SECTION 4 OPERATING INSTRUCTIONS 4-26 4.7.3 External Modulation Signals (Ext1, Ext2) Ext1 and Ext2 apply modulation using external signals supplied to the "Ext1" and "Ext2" connectors (600 Ω impedance) of Mod Input on the front panel.
SECTION 4 OPERATING INSTRUCTIONS 4-27 For the external modulation input, you can select either DC coupling or AC coupling by following the procedure detailed below: (1) Press the "Src" [F4] key in the Modulation menu to open the "Audio Source" menu.
SECTION 4 OPERATING INSTRUCTIONS 4-28 4.8 Setting the AF Output Any one out of the internal modulation signals (Int1, Int2, Int3) and external modulation signals (Ext1, Ext2) of the modulation signal sources can be delivered through the "AF Output" connector on the front panel.
SECTION 4 OPERATING INSTRUCTIONS 4-29 ( 2) Select "Source" by pressing the " ↓ " [F2] key (the characters are highlighted), and hold down the "Sel" [F1] key to select the signal you want delivered.
SECTION 4 OPERATING INSTRUCTIONS 4-30 4.9 Memory Functions 4.9.1 Outline of Memory Functions This signal generator comes with a memory function capable of storing 1000 different panel settings.
SECTION 4 OPERATING INSTRUCTIONS 4-31 4.9.3 Recalling Memory Contents You can recall memory contents by operating the number keys, step keys, and the rotary knob.
SECTION 4 OPERATING INSTRUCTIONS 4-32 To alter the attributes of memory blocks, follow the procedure detailed below: (1) Press the "Mem" [F5] key in the top menu to open the "Memory Block Select" menu.
SECTION 4 OPERATING INSTRUCTIONS 4-33 4.9.4 Clearing the Memory To clear memory contents, follow the keystrokes shown below: [Shift] key, [Memory] (Memory Set) key, number keys, [Hz/ µ V] (Clear) key.
SECTION 4 OPERATING INSTRUCTIONS 4-34 4.9.5 Selecting the Memory Recall Mode If you limit the memory contents to be recalled to frequencies only or frequency and output levels only, you can execute high-speed memory recall, without changing other settings (modulation, for example).
SECTION 4 OPERATING INSTRUCTIONS 4-35 4.10 Sweep Functions 4.10.1 Outline of Sweep Functions This signal generator performs sweep with respect to the frequencies, output levels, and memories. Each sweep has the following sweeping patterns: You execute sweep after selecting a sweep pattern and setting sweep parameters.
SECTION 4 OPERATING INSTRUCTIONS 4-36 4.10.2 Setting and Executing the Sweep In the first place, you select a sweep pattern by following the procedure detailed below: (1) Press the "Swp" [F2] key in the top menu to open the "Sweep" menu.
SECTION 4 OPERATING INSTRUCTIONS 4-37 Then, you set up sweep parameters. The following explanation assumes that the frequency sweep (Start/Stop) was selected for the sweep pattern. (3) Press the "Prmt" [F4] key in the "Sweep" menu to open the "Sweep Parameter (1) " menu.
SECTION 4 OPERATING INSTRUCTIONS 4-38 Once you have set the sweep parameters, you execute the sweep. (7 ) Press the "Rtn" [F5] key in the "Sweep Parameter" menu to return to the "Sweep" menu. (8) Pressing the " " [F2] key starts the sweep.
SECTION 4 OPERATING INSTRUCTIONS 4-39 Sweep Auxiliary Output Connector MG3641A/MG3642A rear panel 4.10.3 Sweep Auxiliary Outputs While the signal generator performs sweep, it outputs signals that are .
SECTION 4 OPERATING INSTRUCTIONS 4-40 The diagram below represents the timing of each sweep auxiliary output. Sweep start point Marker point Sweep end point +10V 0V H L H L H L X Out Z Out Blanking Ou.
SECTION 4 OPERATING INSTRUCTIONS 4-41 4.11 Trigger Function 4.11.1 Outline of trigger function The trigger function executes the panel key operation procedures registered beforehand as the trigger program by the external trigger signal.
SECTION 4 OPERATING INSTRUCTIONS 4-42 4.11.2 Registering the trigger program Register the trigger program as follows: (1) Press the "Trig" [F5] key on the Main Menu (2) to open the "Trigger Program" menu. (2) Press the "Enter" [F3] key.
SECTION 4 OPERATING INSTRUCTIONS 4-43 If the trigger program is registered when another trigger program is already registered, the new trigger program is added to the already-registered trigger program.
SECTION 4 OPERATING INSTRUCTIONS 4-44 (3) Execution using the panel key When the "Exe" [F4] key on the "Trigger Program" key is pressed, the trigger program is executed. This method can be used to check the trigger function. The trigger program can be halted by pressing a key other than the [Preset] or [Local] key on the panel.
SECTION 4 OPERATING INSTRUCTIONS 4-45 4.12 Miscellaneous Functions 4.12.1 Setting Display On/Off The MG3641A/MG3642A has a low EMI radiation from the panel, and it does not become a problem at a ordinary measurement.
SECTION 4 OPERATING INSTRUCTIONS 4-46 4.12.2 Setting Bell • Alarm On/Off Bell (bell sound when any panel key is pressed, or the rotary knob is revolved.) • alarm (alarm sound when any error is occurred.) On/Off can be set as follows. (1) Press the "Sys" [F3] key on the top menu to open the "System (1)" menu.
SECTION 4 OPERATING INSTRUCTIONS 4-47 4.12.3 Setting address and only mode of GPIB The MG3641A/MG3642A has the GPIB only mode. The GPIB address and only mode are set on the GPIB menu, as described below. (1) Press the “ GPIB ” [F2] key on the top menu to open the “ GPIB ” menu.
SECTION 4 OPERATING INSTRUCTIONS 4-48 4.12.4 Panel Lock Not to change the setting condition of this instrument at long-time continuous test etc., press the [Local] key while pressing the [Shift] key to lock all the keys and the rotary knob. To remove the panel-lock condition, turn off and on the power to recover the ordinary state.
SECTION 4 OPERATING INSTRUCTIONS 4-49 4.13 Removing Reverse Power Protection (RPP) Circuit Operation The MG3641A/MG3642A has a Reverse Power Protection (RPP) circuit at the RF Output circuit to protect the internal circuit from the excessive reverse power.
SECTION 4 OPERATING INSTRUCTIONS 4-50 4.14 Error Messages If a panel operation or device internal error occurs, the MG3641A/MG3642A displays messages in the error message area on the multimenu display. Error messages are given below: Operation error: Displayed when a setting becomes invalid because of an incorrect operation.
SECTION 4 OPERATING INSTRUCTIONS 4-51 Hardware status: Displayed when the MG3641A/3642A is used incorrectly or fault occurs. RF out shut-down by RPP: The reverse power protection circuit operates. → Eliminate the cause and cancel the operation of the reverse power protec- tion circuit (see paragraph 4.
SECTION 4 OPERATING INSTRUCTIONS 4-52 . (Blank).
SECTION 5 MEASUREMENT 5-1 SECTION 5 MEASUREMENT 5.1 Measurement of Sensitivity The sensitivity of the receiver means the minimum signal input level required to output the rated signal of the receiver.
SECTION 5 MEASUREMENT 5-2 5.1.1 Measuring 20 dB NQ sensitivity The 20 dB NQ sensitivity is indicated the carrier input voltage (reading value of the output voltage of the signal generator) required to suppress the noise output by 20 dB when there is no 20 dB noise quieting, e.
SECTION 5 MEASUREMENT 5-3 5.1.2 Measuring 12 dB SINAD sensitivity The SINAD sensitivity is indicated by the output level of the signal generator when the distortion rate reaches the determined value (.
SECTION 5 MEASUREMENT 5-4 5.2 Measuring the 1-signal Selectivity The 1-signal selectivity is measured when the receiver operates in a proportional region because the expected wave and interference disturbing wave are fine.
SECTION 5 MEASUREMENT 5-5 (1) Setup Fig. 5-3. Measuring Selectivity in 20 dB NQ Method (2) Measurement procedure (Pass band width) STEP PROCEDURE 1. Set the MG3641A/MG3642A frequency, output level, and FM receiver setting into the 20 dB NQ sensitivity mode.
SECTION 5 MEASUREMENT 5-6 (3) Measurement procedure (Attenuation rate) STEP PROCEDURE 1. Set the MG3641A/MG3642A frequency, output level, and FM receiver setting into the 20 dB NQ sensitivity mode. 2. Place the MG3641A/MG3642A into the relative level display mode and set the output level resolution to 1 dB.
SECTION 5 MEASUREMENT 5-7 5.2.2 Measuring spurious response The spurious sensitivity reduces as the receiver output obtained at reception of the modulated desired-frequency is different from that obtained at reception of the modulated spurious frequency.
SECTION 5 MEASUREMENT 5-8 (2) Measurement procedure STEP PROCEDURE 1. Set the MG3641A/MG3642A frequency to fd = 154.45 MHz. 2. Set the MG3641A/MG3642A frequency deviation to 70 % of the specified maximum frequency deviation (3.5 kHz if the maximum frequency deviation is 5 kHz).
SECTION 5 MEASUREMENT 5-9 5.3 Measuring the 2-signal Selectivity In the conventional method of measuring the selectivity of one signal in the output fixing method, the input signal level had to be changed in a large range from about 0 dBm to about 100 dBm.
SECTION 5 MEASUREMENT 5-10 (1) Setup Fig. 5-5. Measuring the 2-signal Selectivity (2) Measurement procedure STEP PROCEDURE 1. Turn off the output of MG3641A/MG3642A . 2. Place the frequency, output level, and FM receiver setting of MG3641A/MG3642A into the 20 dB NQ sensitivity state.
SECTION 5 MEASUREMENT 5-11 STEP PROCEDURE 7. Turn on the output of MG3641A/MG3642A , place MG3641A/MG3642A into the relative level mode, and set the output level resolution to 1 dB.
SECTION 5 MEASUREMENT 5-12 5.3.2 Measuring the cross-modulation characteristics The cross-modulation characteristics are indicated by the input level of a disturbing level when the receiver output obt.
SECTION 5 MEASUREMENT 5-13 STEP PROCEDURE 14. Turn the rotary knob to adjust the output level so that the noise output of the receiver is set to Vs dB described in step 11 each time the Edit [^] key of MG3641A/MG3642A is pressed.
SECTION 5 MEASUREMENT 5-14 (Blank) 5-14..
SECTION 6 GPIB 6-1 SECTION 6 GPIB 6.1 Outline of GPIB 6.1.1 Overview The MG3641A/MG3642A synthesized signal generator can automate the measurement by a combination with an external controller and other instruments. This device conforms to the institute of electrical and electric engineers (IEEE) std 488.
SECTION 6 GPIB 6-2 6.1.3 Setup example This section shows a setup example using GPIB. (1) Control from host computer Connect the host computer to automatically control this device. (2) Synchronous control in only mode Connect two MG3641A/MG3642A units to synchronously control the frequency or output level.
SECTION 6 GPIB 6-3 6.1.4 Standard The MG3641A/MG3642A GPIB is provided with the IEEE488.1 interface function subset listed in the table below. GPIB Interface Function Code Interface function SH1 Supports all the source handshake functions and takes a data sending timing.
SECTION 6 GPIB 6-4 6.2 Device Message List 6.2.1 Outline The device messages are data messages transferred between the controller and device through a system interface. They are classified into two types: program and response messages. The program message is an ASCII data message transferred from the controller to the device.
SECTION 6 GPIB 6-5 SCPI commands are based on a hierarchical structure. The commands are grouped according to the associated functions. They form hierarchical structures called ‘ subsystems ’ . In this manual, each subsystem is represented by a command tree as shown in the above figure.
SECTION 6 GPIB 6-6 and lower-case. (The three types of headers, FREQUENCY, Frequency, and frequency are all interpretable as the same header.) Example: Long form → :FREQuency:SWEep:MODE AUTO Short form → :FREQ:SWE:MODE AUTO Long + Short → :FREQ:SWEep:MODE AUTO <Option node> The symbol [ ] indicates an option node.
SECTION 6 GPIB 6-7 6.2.6 Parameter The table below shows the parameter types employed for this instrument. In this manual, these parameter types are written in lower-case alphabetical characters between brackets < >, and the IEEE488.
SECTION 6 GPIB 6-8 6.2.8 Command Tree This paragraph shows the MG3641A/MG3642A device message as a command tree for each subsystem. The messages between brackets can be omitted.
SECTION 6 GPIB 6-9 (2) Output Level Subsystem :AMPLitude [ :OUT] :LEVel <Numeric> <Ampl term> ( :SOURce) <Character> :STEP [ :INCRement] <Numeric> <Ampl term> [ :INCRemen.
SECTION 6 GPIB 6-10 (3) AM Subsystem :AM [ :DEPTh] <Numeric> <AM term> <Character> [ :DEPTh]? :STATe <Boolean> :STATe? :SOURce <Character> :SOURce? (4) FM Subsystem :FM [.
SECTION 6 GPIB 6-11 (6) Modulation Source Subsystem :LFSource [ :FREQuency] <Numeric> <Character> [ :FREQuency]? :FREQuency2 <Numeric> <Freq term> :FREQuency2? :WAVeform2 <C.
SECTION 6 GPIB 6-12 (7) Memory Subsystem :MEMory :RECall <Numeric> <Character> :TYPE <Numeric> :STORe <Numeric> :CLEar <Numeric> :SKIP <Numeric> :SWEep <Characte.
SECTION 6 GPIB 6-13 (10) Status Subsystem :STATus :QUEStionable [ :EVENt]? :CONDition? :ENABle <Numeric> :ENABle? :PTRansition? :NTRansition? :OPERation [ :EVENt]? :CONDition? :ENABle <Numeri.
SECTION 6 GPIB 6-14 6.3 Connecting the GPIB Cable A GPIB cable must be connected for remote control by the GPIB. The MG3641A/MG3642A supports the GPIB cable connector on the rear panel. CAUTION Turn the POWER switch off and unplug the power cord before connecting and disconnecting the GPIB cable.
SECTION 6 GPIB 6-15 6.4 Device Message Format 6.4.1 Program message format To output a program message from the controller to the MG3641A/MG3642A with a PRINT statement, the following format is used: (1) Program message terminator SP NL NL EOI EOI NL EOI : New line.
SECTION 6 GPIB 6-16 (3) Program message unit • The program header of the IEEE488.2 common command is prefixed by an asterisk (*). • The program header of the program query is suffixed by a question mark (?).
SECTION 6 GPIB 6-17 • Numeric program data The numeric program data is indicated in two formats: integer format (NR1) and real number (fixed point) format (NR2). • Boolean program data Expressed with 0 indicating false or OFF and 1 or ON indicating true.
SECTION 6 GPIB 6-18 6.4.2 Response message format The response message is received from the MG3641A/MG3642A with an INPUT statement in the following format: (1) Program message terminator (2) Response message The response message consists one or multiple response message units for one or multiple program queries issued with one PRINT statement.
SECTION 6 GPIB 6-19 • Numeric response data The numeric response data is expressed in the integer format (NR1) and real number (fixed point) format (NR2).
SECTION 6 GPIB 6-20 6.5 Status Message The status byte (STB) sent to the controller is based on the IEEE488.1 standard. Its bits, regarded as a status summary message, outlines the current contents of the data stored in the register and queue.
SECTION 6 GPIB 6-21 6.5.2 IEEE488.2-based status register IEEE488.2 prescribes the following two status registers. Status byte register Used to set the RQS and seven summary bits. Combined with a service request enable register. SRQ bit is set on when ORs of both the status and service request enable registers are not 0.
SECTION 6 GPIB 6-22 Definition of bits in status byte register DB2 QUE (Error/Event QUEue) Indicates that the error/event queue is not empty. DB3 QUES (QUEStionable status Summary bit of questionable status register register summary) DB4 MAV (Message Available) The response buffer contains data.
SECTION 6 GPIB 6-23 6.5.4 Reading, writing, clearing, and resetting the status register The table below lists how to read and write each status register. Register Name Reading method Writing method Status Byte Register Serial poll None A 7-bit status byte and RQS bit are returned.
SECTION 6 GPIB 6-24 The table below lists how to clear and reset each status register and ranges affected by clearing and resetting. Register name *RST *CLS P-ON STATus:PRESet Other clear method Statu.
SECTION 6 GPIB 6-25 6.5.5 SCPI error messages SCPI prescribes the error codes and messages as responses to an SCPI command :SYSTem:ERRor?. This paragraph explains the MG3641A/MG3642A error messages in detail. (1) Command error group Error codes – 100 to – 199 indicate that an IEEE488.
SECTION 6 GPIB 6-26 (3) Device dependent error group Error codes – 300 to – 399 indicate that a device error other than command, execution, and query errors occurred in the device. Bit 3 in the standard event status register of the device is set at occurrence of an error.
SECTION 6 GPIB 6-27 6.6 Initializing Device The IEEE488.2 standard prescribes the 3-level initialization types: system, bus, and message initializations. Level Initialization type Description 1 Bus initialization Initializes all the interface functions connected to the bus by the IFC message transferred from controller.
SECTION 6 GPIB 6-28 6.7 Detailed Description of Commands 6.7.1 Frequency subsystem :FREQuency[ :CW] <Numeric> <Freq term> or <Character> Function Sets the carrier frequency.
SECTION 6 GPIB 6-29 :FREQuency:OFFSet? Function Reads out the frequency offset value. Response Frequency offset value Restriction None :FREQuency:SWEep <Character> Function Executes frequency sweep.
SECTION 6 GPIB 6-30 :FREQuency:SWEep:SPAN <Numeric> <Freq term> Function Sets the span frequency for a sweep. Parameter <Numeric> = 0.02 Hz to 1040 MHz (MG3641A) 0.02 Hz to 2080 MHz (MG3642A) Unit <Freq term> Restriction None :FREQuency:SWEep:SPAN? Function Reads out the span frequency for a sweep.
SECTION 6 GPIB 6-31 :FREQuency:SWEep:TIME <Numeric> <Time term> Function Sets the sweep time for a frequency sweep. Parameter <Numeric> = 0.1 ms to 600 s Unit <Time term> Restriction None :FREQuency:SWEep:TIME? Function Reads out the sweep time for a frequency sweep.
SECTION 6 GPIB 6-32 6.7.2 Output level subsystem In the output level subsystem, both “ :POWer: SOURce ” and “ :AMPLitude[:OUT] ” are valid for the first and second layers. (When the first layer is PEWer, the SOURce of the second layer cannot be omitted.
SECTION 6 GPIB 6-33 :AMPLitude[ :OUT]:STATe <Boolean> Function Turns ON or OFF the RF output. Parameter <Boolean> = ON or 1 OFF or 0 Unit <Non term> Restriction None :AMPLitude[ :OUT]:STATe? Function Reads out the state of RF output.
SECTION 6 GPIB 6-34 :AMPLitude[ :OUT]:RELative <Boolean> Function Turns ON or OFF the relative level display mode. Parameter <Boolean> = ON or 1 OFF or 0 Unit <Non term> Restriction None :AMPLitude[ :OUT]:RELative? Function Reads out the state of relative level display mode.
SECTION 6 GPIB 6-35 :AMPLitude[ :OUT]:SWEep:STARt? Function Reads the start level for a sweep. Response Start level for a sweep Restriction None :AMPLitude[ :OUT]:SWEep:STOP <Numeric> <Ampl term> Function Sets the stop level for a sweep. Parameter <Numeric> = – 142.
SECTION 6 GPIB 6-36 :AMPLitude[ :OUT]:SWEep:STEP:NUMBer <Numeric> Function Sets the number of level points for a sweep. Parameter <Numeric> = 2 to 2001 Unit <Non term> Restriction None :AMPLitude[ :OUT]:SWEep:STEP:NUMBer? Function Reads out the number of level points for a sweep.
SECTION 6 GPIB 6-37 :AMPLitude[ :OUT]:SWEep:PATTern <Character> Function Sets the output level sweep pattern. Parameter <Character> = SIZE NO Unit <Non term> Restriction None :AMPLitude[ :OUT]:SWEep:PATTern? Function Reads out the output level pattern.
SECTION 6 GPIB 6-38 6.7.3 AM subsystem :AM[ :DEPTh] <Numeric> <AM term> or <Character> Function Sets the AM depth. Parameter <Numeric> = – 100 to 100 % <Character> = UP DOWN Unit <AM term> (UP,DOWN: <None term>) Restriction Modulation source porality can be changed by entering negative AM depth value.
SECTION 6 GPIB 6-39 6.7.4 FM subsystem :FM[ :FM1][ :DEViation] <Numeric> <Freq term> or <Character> Function Sets the FM1 deviation. Parameter <Numeric> = – 1024 kHz to 1024 .
SECTION 6 GPIB 6-40 :FM:FM2[ :DEViation] <Numeric> <Freq term> or <Character> Function Sets the FM2 deviation. Parameter <Numeric> = – 1024 kHz to 1024 kHz (MG3641A) – 2048.
SECTION 6 GPIB 6-41 6.7.5 PM subsystem :PM:STATe <Boolean> Function Turns ON or OFF the pulse modulation. Parameter <Boolean> = ON or 1 OFF or 0 Unit <Non term> Restriction None :PM:STATe? Function Reads out the state of pulse modulation.
SECTION 6 GPIB 6-42 6.7.6 Modulation source subsystem :LFSource:FREQuency <Numeric> or <Character> Function Sets the frequency of Intl. Parameter <Numeric> = 0 (400 Hz) 1 (1 kHz) <Character> = 400 Hz 1 kHz Unit <Non term> Restriction None :LFSource:FREQuency? Function Reads out the frequency of Int1.
SECTION 6 GPIB 6-43 :LFSource:FREQuency3? Function Reads out the frequency of Int3. Response Frequency of Int3 Restriction None :LFSource:WAVeform3 <Character> Function Sets the wave form of Int3. Parameter <Character> = SIN TRI SAW SQR Unit <Non term> Restriction None :LFSource:WAVeform3? Function Reads the wave form of Int3.
SECTION 6 GPIB 6-44 :LFSource:OUTPut:LEVel <Numeric> Function Sets the AF output level. Parameter <Numeric> = 0 to 4 V Unit <Ampl term> Restriction Units are V, mV, and uV, only. :LFSource:OUTPut:LEVel? Function Reads out the AF output level.
SECTION 6 GPIB 6-45 6.7.7 MEMORY subsystem :MEMory:RECall <Numeric> or <Character> Function Recall from the memory. Parameter <Numeric> = 0 to 999 <Character> = UP DOWN Unit <Non term> Restriction None :MEMory:RECall:TYPE <Numeric> Function Selects the recall type of the memory.
SECTION 6 GPIB 6-46 :MEMory:SWEep:STARt? Function Reads out the start address for a sweep. Response Start address for a sweep. Restriction None :MEMory:SWEep:STOP : <Numeric> Function Sets the stop address for a sweep.
SECTION 6 GPIB 6-47 6.7.8 Display subsystem :DISPlay:STATe <Numeric> Function Turns ON or OFF the display. Parameter <Numeric> = 0 (All OFF) 1 (7-segments only) 2 (All ON) Unit <Non term> Restriction None :DISPlay:STATe? Function Reads out the state of display.
SECTION 6 GPIB 6-48 6.7.9 System subsystem :SYSTem:BELL <Boolean> Function Turns ON or OFF the bell. Parameter <Boolean> = ON or 1 OFF or 0 Unit <Non term> Restriction None :SYSTem:BELL? Function Reads out the state of bell. Response Bell = OFF ON Restriction None :SYSTem:ALARm <Boolean> Function Turns ON or OFF the alarm.
SECTION 6 GPIB 6-49 6.7.10 Status subsystem :STATus:QUEStionable[ :EVENt]? Function Reads out the questionable register event status. Response Register = 0 to 65535 Restriction None :STATus:QUEStionable:CONDition? Function Reads out the questionable register condition status.
SECTION 6 GPIB 6-50 :STATus:OPERation:PTRansition? Function Reads out the operation register transition filter (positive). Response Always 65535 Restriction None :STATus:OPERation:NTRansition? Function Reads out the operation register transition filter (negative).
SECTION 6 GPIB 6-51 6.8 IEEE488.2 Common Command *IDN? Identification Query Function Reads out the manufacturer name, model number etc. of the product.
SECTION 6 GPIB 6-52 *STB? Read Status Byte Query Function Reads out the current value of the status byte including the MSS bit. Response Register = 0 to 255 *PSC <Numeric> Power On Status Clear .
SECTION 6 GPIB 6-53 6.9 Sample Program This section explains how to write a program for controlling the MG3641A/MG3642A and MS2651A spectrum analyzer on the configuration below in the N88-BASIC language of the NEC PC9800 personal computer.
SECTION 6 GPIB 6-54 100 ’ ************************************************ * 110 ’ ** 120 ’ * INPUT vs OUTPUT characteristic of amplifier * 130 ’ * measurement program * 140 ’ ** 150 ’ ************************************************ * 160 ’ 170 ’ ************** initialize GPIB system **************** 180 ’ 190 ISET IFC ’ .
SECTION 6 GPIB 6-55 Execution samples INPUT OUTPUT GAIN – 30.0 dBm – 5.2 dBm 24.8 dB – 28.0 dBm – 3.2 dBm 24.8 dB – 26.0 dBm – 1.2 dBm 24.8 dB – 24.0 dBm .8 dBm 24.8 dB – 22.0 dBm 2.8 dBm 24.8 dB – 20.0 dBm 4.8 dBm 24.8 dB – 18.0 dBm 6.
SECTION 6 GPIB 6-56 6.10 GPIB Command Interchange Function 6.10.1 Outline The MG3641A/MG3642A provides a GPIB command interchange mode so that it can be operated with the auto- matic measurement software written for Anritsu's MG3631A/32A or MG3633A.
SECTION 6 GPIB 6-57 6.10.2 Restrictions in MG3633A command interchange mode This paragraph describes the restrictions in MG3633A command interchange mode. (1) Common items • Exponent representation of numeric data is unavailable. • The semicolon (;) is the only valid separator when multiple commands are sent on one line.
SECTION 6 GPIB 6-58 (4) AM modulation • AM modulation cannot be turned on by the AM modulation setting command (AM<Numeric><AM term>). • Because AM modulation up and down (TEM and EAM) using the rotary knob are enabled by substituting the step key function, the AM modulation resolution is fixed to ten percent.
SECTION 6 GPIB 6-59 (7) Sweep • Because the sweep marker of the MG3641A/MG3642A is always on, the sweep marker ON/OFF switching commands (SF4, SO4, SF5, and SO5) are invalid. • Stepping up (SF8 and SO8) and down (SF9 and SO9) cannot be done during manual sweep.
SECTION 6 GPIB 6-60 6.10.3 Restrictions in MG3631A/32A command interchange mode This paragraph describes the restrictions in MG3631A/32A command interchange mode. (1) Common items • Exponent representation of numeric data is unavailable. • The semicolon (;) is the only valid separator when multiple commands are sent on one line.
SECTION 6 GPIB 6-61 (6) Modulation signal source • Only AF frequency settings using numeric data (AF<Numeric><Freq term>) are valid. Stepping up or down (AIU or AID) and the rotary knob (AU or AD) cannot be used. • The modulation signal polarity cannot be switched (EXN or EXI).
SECTION 6 GPIB 6-62 (Blank) ..
SECTION 7 PERFORMANCE TEST 7-1 SECTION 7 PERFORMANCE TEST 7.1 Performance Test Required The performance test is performed as the preventive maintenance to prevent the MG3641A/MG3642A performance from reducing.
SECTION 7 PERFORMANCE TEST 7-2 Power meter 7.2 Performance Test Device List Table 7-1 lists the measuring instruments for calibration according to the test parameters. Table 7-1. Performance Test Device List Test parameter Measuring instrument Requested Recommended performance* device Output frequency Frequency counter 100 kHz to 2.
SECTION 7 PERFORMANCE TEST 7-3 7.3 Performance Test To confirm performance after the MG3641A/MG3642A acceptance test, periodical inspection, or repair, check the following items for performance test: .
SECTION 7 PERFORMANCE TEST 7-4 7.3.1 Output frequency Confirm that the set frequency is output correctly. (1) Test specifications • Frequency range 125 kHz to 1040 MHz (MG3641A) 125 kHz to 2080 MHz (MG3642A) • Set resolution 0.01 Hz (2) Measuring instrument for test • Frequency counter (3) Setup Fig.
SECTION 7 PERFORMANCE TEST 7-5 7.3.2 Output level frequency characteristics (1) Test specifications • Frequency characteristics with reference to 0 dBm ± 0.5 dB (2) Measuring instrument for test • Power meter (100 kHz to 2080 MHz) (3) Setup Fig. 7-2.
SECTION 7 PERFORMANCE TEST 7-6 7.3.3 Output level accuracy (1) Test specifications • Output level accuracy ± 1 dB ( ≤ +17 dBm, ≥ – 127 dBm) ± 3 dB (< – 127 dBm) (2) Measuring instrument.
SECTION 7 PERFORMANCE TEST 7-7 STEP PROCEDURE 7. Set the MS2602A RF attenuator to 25 dB with the same setup as in STEP 6. 8. Record the marker level displayed. (Mb -8 ) 9. Setting the MG3641A/MG3642A output level down to -28 dBm, repeat the measurement and record the marker level displayed.
SECTION 7 PERFORMANCE TEST 7-8 7.3.4 FM deviation and FM distortion (1) Test specifications • Range 0 to 125 Hz ( ≥ 125 kHz, <250 kHz) 0 to 250 Hz ( ≥ 250 kHz, <500 kHz) 0 to 500 Hz ( ≥ .
SECTION 7 PERFORMANCE TEST 7-9 (4) Test procedure STEP PROCEDURE FM deviation 1. Set the MG3641A/MG3642A output level to +7 dBm. 2. Set the MG3641A/MG3642A frequency and modulation analyzer receive frequency to the expected frequency. 3. Turn on the MG3641A/MG3642A FM, and set Source to Int1 1 kHz.
SECTION 7 PERFORMANCE TEST 7-10 7.3.5 AM modulation factor and AM distortion (1) Test specifications • Range 0 to 100 % • Accuracy with reference to ≥ 0.4 MHz, ≤ +7 dBm, AM ≤ 90 %, Source=Int1 1 kHz, and in a 300 Hz to 3 kHz demodulation band: ± (5 % of set value +2 %) • Distortion with reference to ≥ 0.
SECTION 7 PERFORMANCE TEST 7-11 (5) Note on test The demodulation zone of the modulation analyzer must be within 0.3 to 3 kHz at measurement of the modulation factor and 0.
SECTION 7 PERFORMANCE TEST 7-12 (Blank) 7-12..
SECTION 8 CALIBRATION 8-1 SECTION 8 CALIBRATION 8.1 Calibration Required The calibration is performed as the preventive maintenance to prevent the MG3641A/MG3642A performance from reducing.
SECTION 8 CALIBRATION 8-2 8.3 Calibration For the MG3641A/MG3642A, calibrate the frequency of the built-in Reference oscillator once a half year. The stability of the MG3641A/MG3642A 10 MHz reference crystal oscillator is ± 5 × 10 -9 per day.
SECTION 8 CALIBRATION 8-3 (3) Setup Fig. 8-1. Calibration of Reference Oscillator (4) Calibration procedure STEP PROCEDURE 1. Setup the device at room temperature 23 ± 5 ° C. See Figure 8-1. 2. Set the switch on the rear panel to ON to preheat the MG3641A/MG3642A Reference oscillator and hold this state for 24 hours.
SECTION 8 CALIBRATION 8-4 8-4. (Blank).
SECTION 9 STORAGE AND TRANSPORTATION 9-1 SECTION 9 STORAGE AND TRANSPORTATION This section describes daily maintenance, storage, and transportation of the MG3641A/MG3642A.
SECTION 9 STORAGE AND TRANSPORTATION 9-2 9.2.2 Recommended storage conditions In addition to meeting the conditions listed in paragraph 6.2.1, the MG3641A/MG3642A should preferably be stored where: 1. Temperature is 0 ° to 30 ° C 2. Humidity is 40 % to 80 % 3.
A-1 APPENDIX A INITIAL FACTORY SETTINGS APPENDIX A INITIAL FACTORY SETTINGS Set Item Initial factory Setting Setting mode Carrier frequency setting mode <Carrier Frequency> Carrier frequency value 10 MHz Frequency step value 1 MHz Resolution position 0.
A-2 APPENDIX A INITIAL FACTORY SETTINGS Set Item Initial factory Setting <Pulse Modulation> Modulation OFF Modulation input impedance 50 Ω <Internal Modulation Signal Source (Int1)> Freq.
A-3 APPENDIX A INITIAL FACTORY SETTINGS Set Item Initial factory Setting <Level Sweep> Sweep type START-STOP Sweep mode AUTO Sweep pattern ∆ L Start level − 35 dBm Stop level − 15 dBm Cent.
A-4 APPENDIX A INITIAL FACTORY SETTINGS (Blank) ..
B-1 APPENDIX B FUNCTION-KEY TRANSITION APPENDIX B FUNCTION-KEY TRANSITION.
B-2 APPENDIX B FUNCTION-KEY TRANSITION (Blank).
B-3 Modulation [AM] [FM1] [FM2] [PM] Off Off Off Off Int1 Int1 Int1 600 Ω 0.0 % 0 Hz 0 Hz Sel Rtn ↓ ↓ 1 Audio Source [Int1] [Int2] [Int3] [Ext1] [Ext2] 1 kHz 1000.00 Hz 1000.00 Hz AC–Couple AC–Couple Sin Sin Sin Sel Rtn ↓ ↓ AF Output [Source] [Level] Int1 1.
B-4 Self Check EPROM Flash SRAM OK OK OK Rtn 2 GPIB [Address] [Command] [Mode] 3 SCPI Talker & Listener Sel Rtn ↓ 2 System (1/2) Factory initialize Initial memory set Initial memory clear [Bell].
B-5 Sweep Frequency < Start-Stop > 1000k [Marker] 1000k 100000k Sel Rtn Prmt 1 3 Sel Rtn Prmt Sweep Frequency < Center-Span > 1000k [Marker] 1000k 50500k 100000k Sel Rtn Prmt Sweep Level &.
B-6 . (Blank).
C-1 APPENDIX C FRONT AND REAR PANEL LAYOUT APPENDIX C FRONT AND REAR PANEL LAYOUT.
C-2 APPENDIX C FRONT AND REAR PANEL LAYOUT (Blank).
C-3.
C-4 C-4..
D-1 APPENDIX D INDEX APPENDIX D INDEX Note : The number at the right side indicates the paragraph number for the word at the left side. 12 dB SINAD 5.1,5.1.2 20 dB NQ 5.1,5.1.1,5.2.1 A) AC 2.4.2,3.1.2,4.1,4.7.3,7.3 AC line voltage 2.
D-2 APPENDIX D INDEX D) DC 4.7.3,4.13 digital synthesizer 4.7.2 E) EMF 3.1.1 EMI radiation 4.12.1 Entr 4.11.2 EOI 6.4.1 Error message 4.14 Exe 4.11.1,4.11.3 Ext 3.
D-3 APPENDIX D INDEX L) Level Continuous Mode 3.1.1,4.5.4 Level mode 4.5.6 Level offset value 4.5.3 Level Safety Mode 4.5.6 Level Step Size 4.5.1 LF 6.4.1 Listen Only 4.12.3 L-Ofs 3.1.1,4.5.3 long form 6.
D-4 APPENDIX D INDEX P) PM 4.6.6 Performance test 7.1 ,7.2,7.3 polarity of modulation signal 4.6.5 preset memory 4.3 Prmt 4.10.2 Pulse Modulation 3.1.2,4.6.6 Q) Query 6.4.1 R) Recall 4.
D-5 APPENDIX D INDEX sweep auxiliary output 4.10.3 Sweep Parameter 4.10.2,4.10.3 Swp 4.10.2 System 4.3,4.5.6,4.12.2 T) Talker & Listener 4.12.3 terminated-voltage display 4.5.6 thermal protector 2.
D-6 APPENDIX D INDEX . (Blank).
E-1 APPENDIX E PERFORMANCE TEST RESULTS SHEET APPENDIX E PERFORMANCE TEST RESULTS SHEET This section shows examples of the performance test results sheets for the performance test of the MG3641A/MG3642A.
E-2 APPENDIX E PERFORMANCE TEST RESULTS SHEET Test site: Report No. Date Tested by Model name MG364 A Synthesized Signal Generator Mfg. No. Ambient temp.
E-3 APPENDIX E PERFORMANCE TEST RESULTS SHEET Output level accuracy (Para.7.3.3) Set Min. Result Max. Output level spec. 10 MHz 100 MHz 500 MHz 1000 MHz 2000 MHz Spec.
E-4 APPENDIX E PERFORMANCE TEST RESULTS SHEET FM deviation accuracy (Para. 7.3.4) Setting Min. Result Max. Freq. FM dev. Spec. Spec. 300 Hz 275 Hz 325 Hz 10 MHz 1 kHz 940 Hz 1.06 kHz 3 kHz 2.84 kHz 3.16 kHz 10 kHz 9.49 kHz 10.51 kHz 300 Hz 275 Hz 325 Hz 1 kHz 940 Hz 1.
E-5 APPENDIX E PERFORMANCE TEST RESULTS SHEET FM distortion (Para. 7.3.4) Set Result Max. FM dev. 10 MHz 100 MHz 500 MHz 1000 MHz 2000 MHz spec. 3.5 kHz -40 dB 22.5 kHz -45 dB AM mod. factor accuracy (Para. 7.3.5) Set Min. Result Max. AM dep. spec. 10 MHz 100 MHz 500 MHz 1000 MHz 2000 MHz spec.
E-6 APPENDIX E PERFORMANCE TEST RESULTS SHEET This sheet is used for the calculation at measurement of output level accuracy (para. 7.3.3). Copy this at the measurement. Calculation sheet for output level accuracy (Measurement frequency: MHz) . MG3641A Pre- MS2602A setting Marker level Output level STEP /MG3642A amp.
Un punto importante, dopo l’acquisto del dispositivo (o anche prima di acquisto) è quello di leggere il manuale. Dobbiamo farlo per diversi motivi semplici:
Se non hai ancora comprato il Anritsu MG3641A è un buon momento per familiarizzare con i dati di base del prodotto. Prime consultare le pagine iniziali del manuale d’uso, che si trova al di sopra. Dovresti trovare lì i dati tecnici più importanti del Anritsu MG3641A - in questo modo è possibile verificare se l’apparecchio soddisfa le tue esigenze. Esplorando le pagine segenti del manuali d’uso Anritsu MG3641A imparerai tutte le caratteristiche del prodotto e le informazioni sul suo funzionamento. Le informazioni sul Anritsu MG3641A ti aiuteranno sicuramente a prendere una decisione relativa all’acquisto.
In una situazione in cui hai già il Anritsu MG3641A, ma non hai ancora letto il manuale d’uso, dovresti farlo per le ragioni sopra descritte. Saprai quindi se hai correttamente usato le funzioni disponibili, e se hai commesso errori che possono ridurre la durata di vita del Anritsu MG3641A.
Tuttavia, uno dei ruoli più importanti per l’utente svolti dal manuale d’uso è quello di aiutare a risolvere i problemi con il Anritsu MG3641A. Quasi sempre, ci troverai Troubleshooting, cioè i guasti più frequenti e malfunzionamenti del dispositivo Anritsu MG3641A insieme con le istruzioni su come risolverli. Anche se non si riesci a risolvere il problema, il manuale d’uso ti mostrerà il percorso di ulteriori procedimenti – il contatto con il centro servizio clienti o il servizio più vicino.